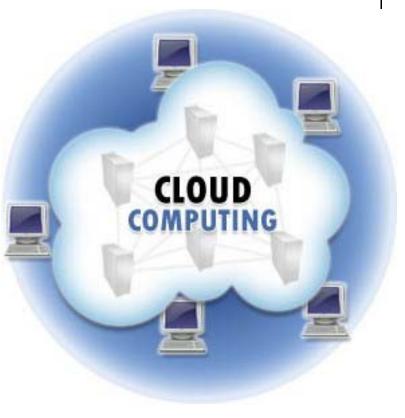
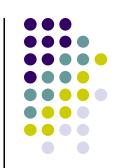
Ubiquitous and Mobile Computing CS 525M: DroidCluster: Towards Smartphone Cluster Computing

Pengfei Tang


Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Introduction:

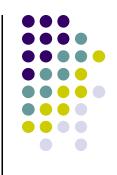

- Cloud computing are well-known and frequently investigated topics
- Plenty of research work during the past 30 years
- there is still recent and ongoing work in this area on big data like Hadoop

Introduction/Motivation:

Why is smartphone cluster computing important?

- In mobile computing, miniaturization and energy saving are obviously a trend
- Yesterday's clustered workstations could compute climate models or simulate nuclear explosions, clusters of today's smartphones could do so as well
- Volunteer computing is a viable alternative to buying or renting big compute clusters on many successful scientific projects like Seti@home, Einstein@home

Introduction/Motivation:


what will be learned?

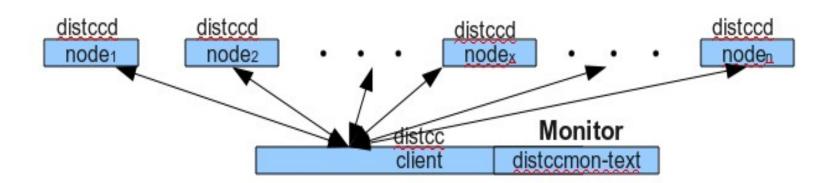
- Some scenarios where it is reasonable to use the computational resources of mobile devices
- overview about the current state and development of technology for mobile computing
- a feasibility study, implementing and evaluating a small MPI cluster using ordinary Android mobile phones

Applications

- Rolling Clouds
- Corporate Environments
- Cooperative Cracking

Rolling Clouds

 Mobile devices can easily form a closely coupled computing cloud


- WiFi infrastructure already built into modern trains for providing with internet access
- Benefit: Fine gained local weater forecast and ozone concentration

Corporate Environments

 Distcc is a distributed compiler framework for speeding up compilation of source code

Cooperative Cracking

- Moxie Marlinspikes tool WPACracker uses a 400 CPU cluster running in the Amazon cloud
- At Black Hat DC 2011, Thomas Roth successfully demonstrated another Cloud Cracking Suite (CCS) that is able to crack WPA-encryption in a reasonable time
- Large number of smartphones share their resources and coordinate a distributed attack lower the time

Mobile computing hardware evolution

Evolution of mobile processors

Technology	2007-8	2009-10	2011-12	Improvement
ARM® Processor	ARM11 470-700 DMIPS	Cortex-A8 1,200-2,000 DMIPS	Dual Cortex-A9 5,000+ DMIPS	10x + SMP
Ext. Display	VGA	XGA	WUXGA + HDMI	8x + HDMI
Video	VGA-30fps	720p-30fps	1080p-30fps	7x
3D Graphics	2 Mtri/s OpenGL ES 1.1	10+ Mtri/s OpenGL ES 2.0	20+ Mtri/s OpenGL ES 2.0	10x + Pgm. shaders
Imaging	3-5 MP	8-12 MP	16-20 MP	7x
Audio	15 hrs	40 hrs	140+ hrs	10x
DDR Memory	128-256 MB	256-512 MB	1-2GB	8x
Mass Storage	8-16 GB	16-32 GB	64-128 GB	8x
Process	90 nm	65/45 nm	45 nm / beyond	3+ nodes

Mobile computing hardware evolution

LINPACK PERFORMANCE OF DIFFERENT ANDROID SYSTEMS

System	CPU	MHz	ARM Core	Android Version	MFLOPS \triangle
Huawei U8120	Qualcomm MSM7225	528	ARM11	2.3.7	3.7
LG P500	Qualcomm MSM7227	600	ARM11	2.2	4.0
HTC Legend	Qualcomm MSM7227	600	ARM11	2.3.7	7.5
Samsung Galaxy S	Samsung Exynos 3110	1000	Cortex A8	2.3.7	17.7
HTC Nexus One	Qualcomm QSD 8250	1000	Qualcomm Scorpion	4.0.3	31.0
Medion Lifetab P9514	Nvidia Tegra 2	2x1000	Cortex A9	3.2	54.4
Samsung Galaxy Nexus	Texas Instruments OMAP 4460	2x1200	Cortex A9	4.0.2	75.0

Mobile computing hardware evolution

- Changes in performance reflect the rapid architectureal innovations that we can currently witness in the mobile SoC market
- the computing power available in small mobil devices already surpassed the computing power of high-end workstations from a few years ago

Feasibility study

- Build a small cluster with 6 Android nodes(LG P500)
- Each phone equipped with a 600MHz MSM7227 processor and 512MB RAM
- To distribute the calculation, using a LINPACK implementation based on a MPI library

MPI: Message Passing Interface is a standard describing the message exchange in parallel computations in distributed systems.

LINPACK: software used to measure a system's floating point computing power. Now, it is the standard benchmark for the TOP500 list.

Figure 1. System Overview

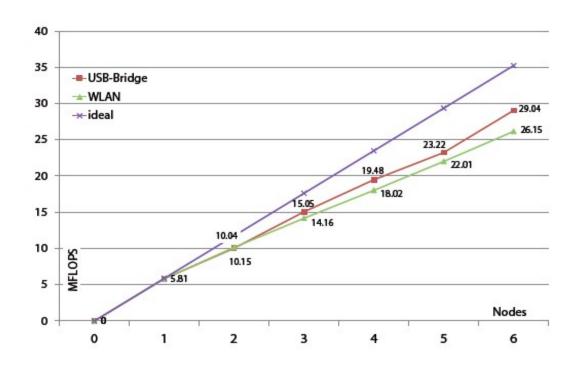


Figure 2. Combined computation power (Mega-FLOPS) of clustered smartphones (1 to 6 phones) running Linpack and MPI.

Conclusions/Future Work

- The current evolution in mobile computing platforms is at a faster pace and follows the developments in the desktop world.
- In order to pursue the highest performance, mobile computing platform are formed between mobile and desktop.
- This combination leads to conclude that we should find ways to fully utilize these computational capacities

Conclusions/Future Work

- It is possible to integrate Android devices into a distributed cluster in a way does not interfere with the running Android system and apps.
- Distributed computing frameworks better adapted to the special challenges in the mobile computing world will be developed
- A bunch of mobile devices replace a stationary server will be a real benefit in an environmental as well as in a cost sense

- Thanks.
- Questions?