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INTRODUCTION
• This paper-work presents an opportunity for spontaneous interaction with 

consumer electronics and mobile devices based on gestures or physical 
manipulation of the devices. 

• uWave is presented to address the multiple technical challenges faced by 
gesture-based interaction and focus on gestures without regard to finger 
movement such as sign language.

• Unlike statistical methods, uWave requires a single training sample for 
each gesture pattern and it only employs a three‐axis accelerometer that 
has already appeared in numerous consumer electronics, e.g. Nintendo 
Wii remote, and mobile device, e.g. Apple iPhone.

• uWave delivers competitive accuracy.
• uWave matches the accelerometer readings for an unknown gesture with 

those for a vocabulary of known gestures, or templates, based on dynamic 
time warping (DTW). 

• Effective implementation with multiple prototypes of uWave on various 
platforms, including Smartphones, microcontroller, and the Nintendo Wii
remote hardware. 



RELATED WORK
• the Wii remote has a “camera” (IR sensor) inside the remote which detects 

motion by tracking the relative movement of IR transmitters mounted on the 
display. It basically translates a “gesture” into “handwriting”, contributing itself 
to a rich set of handwriting recognition techniques. 

• “smart glove” based solutions can recognize very fine gestures, e.g., the finger 
movement and conformation but require the user to wear a glove tagged with 
multiple sensors to capture finger and hand motions in fine granularity. 
Therefore, they are unfit for spontaneous interaction due to the high overhead 
of engagement.

• LiveMove Pro from Ailive provides a gesture recognition library based on the 
accelerometer in the Wii remote. Unlike uWave, LiveMove Pro targets user-
independent gesture recognition with a predefined gesture vocabulary and 
requires 5 to 10 training samples for each gesture. No systematic evaluation of 
the accuracy of LiveMove Pro is publicly available.

• Dynamic time warping (DTW) is the core of uWave. Extensively investigated 
for speech recognition, in particular speaker- dependent speech recognition 
with a limited vocabulary. However, DTW is still very effective in coping with 
limited  training data and a small vocabulary, which matches up well with 
personalized gesture-based interaction with consumer electronics and mobile 
devices. 



UWAVE ALGORITHM DESIGN
• The key technical components of uWave: acceleration quantization, 

dynamic time warping(DTW), and template adaptation.
• uWave bases the recognition on the matching of two time series of forces, 

measured by a single three-axis accelerometer. 
• For recognition, uWave leverages a template library that stores one or more 

time series of known identities for every vocabulary gesture, often input by 
the user. 

• The input to uWave is a time series of acceleration provided by a three-axis 
accelerometer.

• Each time sample is a vector of three elements, corresponding to the 
acceleration along the three axes.

• uWave first quantizes acceleration data & then templates into a time series 
of discrete values. It then employs DTW to match the input time series 
against the templates of the gesture vocabulary. It recognizes the gesture as 
the template that provides the best matching. 

• The recognition results, confirmed by the user as correct or incorrect, can 
be used to adapt the existing templates to accommodate gesture variations 
over the time.



Quantization of Acceleration Data
• Quantization reduces the length of input time series for DTW in order to 

improve computation efficiency. It also converts the accelerometer reading 
into a discrete value thus reduces floating point computation. 

• Quantization improves recognition accuracy by removing variations not 
intrinsic to the gesture, e.g. accelerometer noise and minor hand tilt.





Dynamic Time Warping

• Dynamic time warping (DTW) is a classical algorithm based on dynamic 
programming to match two time series with temporal dynamics , given the 
function for calculating the distance between two time samples. 

• uWave employs the Euclidean distance for matching quantized time series 
of acceleration. 

• DTW employs dynamic programming to calculate the matching cost and 
find the corresponding optimal path. 



Dynamic Time Warping (DTW) algorithm



Template Adaptation

• uWave keeps two templates generated in two different days for each vocabulary 
gesture. It matches a gesture input with both templates of each vocabulary gesture 
and takes the smaller matching cost of the two as the matching cost between the 
input and vocabulary gesture.

• Each template has a timestamp of when it is created. As the user input more gesture 
samples, uWave updates the templates based on how old the current templates are 
and how well they match with new inputs. 



PROTOTYPE IMPLEMENTATION

• multiple prototypes of uWave have been implemented on various platforms, 
including the Wii remote, Windows Mobile Smartphones, Apple iPhone, and the 
Rice Orbit sensor.

• Our accuracy evaluation is based on the Wii remote prototype, due to its popularity 
and ease of use. The Wii remote has a built-in three-axis accelerometer from
Analog Devices, ADXL330 . The accelerometer has a range of -3g to 3g and noise 
below 3.5mg when operating at 100Hz . The Wii remote can send the acceleration 
data and button actions through Bluetooth to a PC in real time.



EVALUATION
• Evaluation of uWave for a vocabulary of predefined gestures based on the 

Wii remote prototype  -----
A. Gesture Vocabulary from Nokia

• Team employed a set of eight simple gestures identified by a Nokia research study  as 
preferred by users for interaction with home appliances. The work also provided 
comprehensive evaluation of HMM-based methods so that a comparison with uWave is 
possible. Figure C shows these gestures as the paths of hand movement.

B. Gesture Database Collection
• gestures  are collected corresponding to the Nokia vocabulary from eight 

participants with the Wii remote-based prototype. For a participant, gestures are 
collected from seven days within a period of about three weeks. On each day, the 
participant holds the Wii remote in hand and repeats each of the eight gestures in the 
Nokia vocabulary ten times. The database consists of 4480 gestures in total and 560 
for each participant. This database provides us a statistically significant benchmark 
for evaluating the recognition accuracy. Users exhibit high variations in the same 
gesture over the time. Samples for the same gesture from the same day cannot 
capture this and may lead to overly optimistic recognition results.



• C. Recognition without Adaptation  (Refer Figure A)
• 1) Test Procedure
• Because focus is on personalized gesture recognition, uWave is evaluated using the 

gestures from each subject separately. Each test produces a confusion matrix that shows 
the percentage of times how a sample is recognized. We average the confusion matrixes 
for the 70 tests to produce the confusion matrix for each participant. We average 
confusion matrixes of all eight participants to produce the final confusion matrixes. 

• A closer look into the confusion matrixes for each participant reveals large variation 
(9%) in recognition accuracy among different participants. 

• The evaluation  results also show the effectiveness of quantization, i.e., temporal 
compression and non-linear conversion, of the raw acceleration data. Temporal 
compression speeds up the recognition by more than nine times without a negative 
impact on accuracy; and non-linear conversion improves the average accuracy by 1% 
and further speeds up the recognition.

• 2) Evaluation using Samples from the Same Day
• To highlight how gesture variations from the same user over multiple days impact the 

gesture recognition,  uWave is tested only with other samples collected in the same day.
• Figure  (Right) summarizes the recognition results averaged cross all eight 

participants. It shows a significantly higher accuracy (98.4%) than that of using 
samples from all different days. The difference between Figure  (Left) and
Figure  (Right) highlights the possible variations for the same gesture from the same 



• D. Recognition with Adaptation (Refer Figure B)
• The considerable difference between Figure A (Left) and Figure A (Right) motivates 

the use of template adaptation to accommodate variations over the time in order to 
achieve accuracy close to that in Figure A (Right).

• uWave is evaluated with adaptation for each participant separately. Because the 
adaption is time-sensitive, we have to apply Bootstrapping in a more limited fashion.

• We have seven tests for each participants and each produces a confusion matrix. We 
average them to produce the confusion matrix for each participant and average the 
confusion matrixes of all participants for the final one.

• Figure B summarizes the recognition results averaged across all participants. It 
shows an accuracy of 97.4% for Positive Update and 98.6% for Negative Update, 
significantly higher than that without adaptation (Figure A Left) and close to that 
tested with samples from the same day (Figure A Right). While template adaptation 
requires user feedback when a recognition error happens, the high accuracy 
indicates that it is needed only for 2-3% of all the test samples.



UWAVE-ENHANCED APPLICATIONS

• A. Gesture-based Light-Weight User Authentication
• For privacy-insensitive user-specific data, this manner of light-weight, 

‘soft’ user authentication provides a mechanism for a user to 
personalize the device. 
The objectives are 1) accurate recognition of a user and
2) to be user friendly, easy to remember and easy to perform. 

• B. Gesture-based 3D Mobile User Interface
• uWave can  recognize three dimensionalhand movement and it has 

been observed that it is intuitive and convenient to navigate a 3D user 
interface with 3D hand gestures . 

• Manipulating a 3D interface using a 3D gesture is much more 
compelling than traditional button-based solutions.  In order to 
explore this, team developed a 3D-mobile application and integrated 
uWave with it to enable gesture-based navigation.



DISCUSSION

• The limitations of uWave and gesture recognition based on 
accelerometers in general -----

• A. Gestures and Time Series of Forces
• The premise of uWave is that human gestures can be characterized as time 

series of forces applied to a handheld device. However, it is important to 
note that while one may produce the three dimensional contour of the hand 
movement given a time series of forces, the same contour may be produced 
by very different time series of forces. 

• B. Challenge of Tilt
• uWave relies on a single three-axis accelerometer to infer the force applied. 

However, the reading of the accelerometer does not directly reflect the 
external force, because the accelerometer can be tilted around three axes. 
The same external force may produce different accelerations along the three 
axes of the accelerometer if it is tilted differently; likewise, the different 
forces may also produce the same accelerometer readings.



C. User-Dependent vs. User Independent Recognition
• First, user-independent gesture recognition is difficult. The database shows great 

variations among participants even for the same predefined gesture. Second, user-
independent gesture recognition may not be as attractive as speaker-independent 
speech recognition because there is no standard or commonly accepted gestures for 
interaction. Commonly recognized gestures by humans are often simple, such as 
those in the Nokia vocabulary. As they are short and simple, however, they can be 
easily confused with each other, in particular with the presence of tilt and user 
variations. On the other hand, for personalized gestures composed by users, it is 
almost impossible to collect a large dataset for statistical methods to be effective.

• D. Gesture Vocabulary Selection
• The reason for confusion is that tilt of the handheld device can transform different 

forces into similar accelerometer readings. More complicated gestures may lead to 
higher accuracy because they are likely to have more features that distinguish them 
from each other, in particular, offsetting the effect of tilt and gravity. Nevertheless, 
complicated gestures pose a burden to human users: the user has to remember how 
to perform complicated gestures in a consistent manner and associate them with 
some unrelated functionality. Eventually, the number of complicated gestures a user 
can comfortably command may be quite small.



Figure A Confusion matrixes for the Nokia vocabulary without 
adaptation. Columns are recognized gestures and rows are the actual 
identities of input gestures. (Left) Tested with samples from all days 

(average accuracy is  93.5%);(Right) Tested with samples from the same 
day as the template (average accuracy is 98.4%)



Figure B Confusion matrixes for the Nokia vocabulary with adaptation, tested with 
samples from all days. Columns are recognized gestures and rows are the actual 

identities of input gestures. (Left)Positive Update (average accuracy is 97.4%); (Right) 
Negative Update (average accuracy is 98.6%)



Figure C: Gesture vocabulary adopted from [6]. The dot denotes 
the start and the arrow the end



CONCLUSIONS

• uWave presented for interaction based on personalized gestures  and physical 

manipulations employs a single accelerometer so it can be readily implemented on 

many commercially available consumer electronics and mobile devices.
• The core of uWave includes dynamic time warping (DTW) to measure similarities 

between two time series of accelerometer readings; quantization for reducing 
computation load and suppressing noise and non-intrinsic variations in gesture
performance; and template adaptation for coping with gesture variation over the 
time.

• Evaluation of uWave using a large gesture library with over 4000 samples collected 
from eight users over multiple weeks for a gesture vocabulary with eight gesture 
patterns identified by a Nokia research. It shows that uWave achieves 98.6% 
accuracy, competitive with statistical methods that require significantly more 
training samples.

• Evaluation also highlights the challenge of variations over the time to user-
dependent gesture recognition and the challenge of variations across users to user-
independent gesture recognition.



• Two applications of uWave are presented: gesture-based authentication and 
mobile 3D interface with gesture-based navigation on an accelerometer-
enhanced Smartphone. Both applications show high recognition accuracy 
and recognition speed with different hardware features and system 
resources.

• From the perspective of developing technology , uWave is a major step and 
holds out good prospects to the adoption of personalized gesture 
recognition in a range of devices and platforms and to the realization of 
novel gesture-based navigation of next generation user interfaces.
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