Advanced Computer Graphics CS 525M: Social Sensing for Epidemiological Behavior Change

Zahid Mian

Computer Science Dept. Worcester Polytechnic Institute (WPI)

Epidemiology

- Study of the ...
 - Patterns
 - Causes
 - Effects of health and disease conditions
- ... in defined populations
- Study of the causes and transmission of disease within a population

Paper Outline

- The Problem
- Experiment/Infrastructure
- Results
 - Basic Patterns
 - K-Clustering Classification
 - PSI Algorithm
- Conclusion

What's the Problem?

- "Understand how individual behavior patterns are affected by physical and mental health symptoms."
- Can cell phones be used to detect an outbreak of diseases? (ubiquitous computing)
 - Based on co-location of devices

- Introverts, isolates, and persons lacking social skills may also be at increased risk for both illness behaviors and pathology.
- Stress depletes local immune protection, increasing susceptibility to colds and flu.
- Psychological disturbances could develop in response to frequent illness.

The Experiment

- Residents of an undergrad dorm (Feb to Apr 2009).
 - Data secured, anonymized
- Those immunized for influenza, filtered out (baseline survey)
- Individuals surveyed daily for symptoms of contagious diseases
 - common colds, influenza & gastroenteritis.
 - Phone disabled if survey not completed
- Characteristic changes in behavior when sick
 - total communication
 - communication patterns with respect to time of day
 - diversity of their network.

Infrastructure

- Device Selection
 - Client based on Windows Mobile 6.x devices
 - Supported devices featured WLAN, EDGE and SD Card storage
- Data
 - Logged Call and SMS details every 20 minutes
 - missed calls and calls not completed
- Server
 - Post-processing of logs

Mobile Sensing Platform

- Proximity Detection (Bluetooth):
 - looked for other Bluetooth-enabled devices
- Approximate Location (WLAN AP)
 - Determine Location based on the AP (over 55 APs available in building)
- Battery Impact
 - Windows Phones notoriously bad for battery
 - Limit periodic scanning

Table 1. Symptom Survey Questionnaire. All questions were Yes/No responses

Survey Question (as shown on mobile phone)

Do you have a sore throat or cough?

Do you have a runny nose, congestion or sneezing?

Do you have a fever?

Have you had any vomiting, nausea or diarrhea?

Have you been feeling sad, lonely or depressed lately?

Have you been feeling stressed out lately?

- Total Communications: phone calls + SMS
- Late Night/Early Morning: 10 pm 9 am
- Communication Diversity: unique individuals within 48-hour period
- Entropy: Amount of disorder or randomness
- Physical Proximity Entropy with Other Participants: # of times remote device scanned divided by total scanned devices in 48 hours

- Physical Proximity Entropy with Other
 Participants Late Night and Early Morning
- Physical Proximity Entropy for Bluetooth Devices Excluding Experimental Participation
 - "familiar strangers" Bus Stop, classroom, etc.
- WLAN Entropy based on University WLAN APs
 - Only University APs are considered
- WLAN Entropy based on external WLAN APs

Behavioral Effects of Low Intensity Symptoms (Runny nose)

Figure 1. Behavior effects of runny nose, congestion, sneezing symptom, n=587/2283, *: p < 0.05 **: p < 0.01 ***: p < 0.001

- Increased total communication
- Increased late-night early morning communications
- Increased WLAN APs

Behavior Effects of Low-Intensity Symptoms (Sore Throat)

Figure 2. Behavior effects of sore throat and cough symptom, n=393/2283, *: p < 0.05 **: p < 0.01 ****: p < 0.001

- Bluetooth entropy with respect to others increases
 - counter-intuitive
 - Spending time indoors?

Behavior Effects of Higher-Intensity Symptoms (Fever and Influenza)

- Significant Drop in
 - Entropy of University WLAN APs
 - Entropy of external WLAN APs
- Moderate Drop in
 - Late Night/Early Morning Communications
 - Late Night/Early Morning Bluetooth entropy

Behavior Changes (Self-reported sad-lonely-depressed)

 Generally a decrease in mobile activity (isolation)

Figure 5. Behavior Changes with self-reported sad-lonely-depressed responses n=282/2283, *: p < 0.05 **: p < 0.01 ***: p < 0.001

Behavior Changes (Self-reported often-stressed)

(a) Communication diversity decreases **

(b) Overall Bluetooth entropy decreases **

(c) Late night early morning Bluetooth entropy with other experiment participants reduces **

(d) WLAN based entropy with university WLAN APs decreases ***

(e) WLAN Entropy with external WLAN APs decreases ***

Figure 6. Behavior Changes with self-reported often-stressed responses n=559/2283, *: p < 0.05 **: p < 0.01 ***: p < 0.001

 Generally a decrease in mobile activity (isolation)

Symptom Classification

- Can we Build a Classification Scheme to Predict when Individuals are likely to be symptomatic
 - Asymmetric Misclassification Penalties (MetaCost)
 - Method for making classifiers cost-sensitive
 - Using K-Clustering, Four Clusters Emerge:
 - Stress + Depression
 - Runny Nose + Sore Throat
 - Fever + Influenza
 - Runny Nose + Sore Throat + Fever + Influenza

KNN Correlations Between Dependent Symptom Variables

- K-Nearest Neighbor
- Lighter Color Indicates
 Stronger Dependency
- Flu + Fever
- Runny Nose + Sore Throat
- Sad/Depressed + Stress

- Precision
 - Fraction of retrieved instances that are valid
- Recall
 - Fraction of relevant instances that are retrieved
- F-measure: combines precision and recall

$$F = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$$

Example

- When a search engine returns 30 pages only 20 of which were relevant while failing to return 40 additional relevant pages
 - Precision = 20/30 = 2/3
 - Recall = 20/60 = 1/3
 - F-measure = 2 * (2/3 * 1/3)/(2/3 + 1/3) = 4/9
- What does it mean when ...
 - Precision is high but Recall is low?
 - Recall is high but Precision is low? Huh?

Sad/Depressed or Stressed

Common Colds

Sore-Throat, Cough, Runny Nose, Congestion, Sneezing Symptoms

Fever, Nausea, Stress

Flu Only

Flu Only

Granger Analysis & PSI

- Granger Analysis: determining whether one time series is useful in forecasting another
 - Predict a future event based on previous events
- Phase Slope Index (PSI) Method
 - More Noise Immune then Granger Analysis

Table 2. P	PSI R	esults	ordered	by c	ombined	scores
------------	-------	--------	---------	------	---------	--------

Table 2. PSI Results ordered by combined scores				
Source	Follower			
Runny nose	WLAN entropy with ex-			
	ternal APs			
Sad-depressed-lonely	Sore throat-cough			
Often stressed	Total Bluetooth proxim-			
	ity counts			
Communication diver-	Late-night early morn-			
sity	ing Bluetooth proximity			
	counts			
Often stressed	Communication diver-			
	sity			
Often stressed	Late-night early morn-			
	ing Bluetooth proximity			
	counts			
Bluetooth entropy with	External WLAN entropy			
other residents				
Runny nose	Total WLAN counts			
Often stressed	WLAN entropy with			
	university APs			
Bluetooth proxim-	External WLAN entropy			
ity counts with other				
residents				
Late-night early morn-	Overall Bluetooth en-			
ing communication	tropy			
Sad depressed lonely	Bluetooth entropy			

'often-stressed' is useful in forecasting proximity, communication and WLAN behaviors, which suggests that individuals realize and report that they are stressed before it is reflected in their behavior

- Strengths
 - Shows the power of ubiquitous computing in Epidemiological Studies
 - K-Clustering and PSI Are Good Use of Predictive Models
 - Somewhat Dated, but the Idea is still relevant
 - Opens the door for further research (predictive healthcare)
- Weaknesses
 - Does not account for external factors like exams
 - Small Sample, homogenous Population (maybe)

References

- Madan, Anmol, et al. "Social sensing for epidemiological behavior change." Proceedings of the 12th ACM international conference on Ubiquitous computing. ACM, 2010.
- Domingos, Pedro. "MetaCost: a general method for making classifiers cost-sensitive." *Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining*. ACM, 1999.
- http://en.wikipedia.org/wiki/Epidemiology
- http://en.wikipedia.org/wiki/KNN
- http://en.wikipedia.org/wiki/Precision and recall

Thank You

• Questions?

