CS 528 Mobile and Ubiquitous Computing Lecture 7b: Human-Centric **Smartphone Sensing Applications Emmanuel Agu**

StudentLife

College is hard...

Rui Wang, Fanglin Chen, Zhenyu Chen, Tianxing Li, Gabriella Harari, Stefanie Tignor, Xia Zhou, Dror Ben-Zeev, and Andrew T. Campbell. 2014. StudentLife: assessing mental health, academic performance and behavioral trends of college students using smartphones. In *Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing* (UbiComp '14)

Lots of Stressors in College

- Lack of sleep
- Exams/quizzes
- High workload
- Deadlines
- 7-week term
- Loneliness (e.g. freshmen, international students)

Consequences

- Burnout
- Decline in psychological well-being
- Academic Performance (GPA)

Students who Need Help Not Noticed

- Many stressed/overwhelmed students not noticed
 - Even worse in large classes (e.g. intro classes with 150-200 students)
 - Many do not seek help
 - E.g. < 10% of clinically depressed students seek counseling

StudentLife: Continuous Mobile Sensing

 Research questions: Are sensable patterns (sleep, activity, social interactions, etc) reliable indicator of suffering student (e.g. low GPA, depressed, etc)?

StudentLife Continuous Sensing App

- **Goal:** Use smartphone sensing to assess/monitor student:
 - Psychological well-being (depression, anxiety, etc)
 - Academic performance
 - Behavioral trends, stress patterns as term progresses
- Demonstrate strong correlation between sensed data and clinical measures of mental health (depression, loneliness, etc)
- Show smartphone sensing COULD be used to give clinically valid diagnoses?
 - Get clinical quality diagnosis without going to clinic
- Pinpoint factors (e.g. classes, profs, frats) that increase depression/stress

Potential Uses of StudentLife

- Student planning and stress management
- Improve Professors' understanding of student stress
- Improve Administration's understanding of students' workload

StudentLife Approach

- Semester-long Study of 49 Dartmouth College Students
 - Continuously gather sensible signs (sleep, activity level, etc)
 - Administer mental health questionnaires periodically as pop-ups (called EMA)
 - Also retrieve GPA, academic performance from registrar
- Labeling: what activity, sleep, converstation level = high depression

Specifics: Data Gathering Study

- Entry and exit surveys at Semester (2 times) start/end
 - on Survey Monkey
 - E.g. PHQ-9 depression scale
- 8 MobileEMA and PAM quizzes per day
 - Stress
 - Mood (PAM), etc
- Automatic smartphone sensed data
 - Activity Detection: activity type, WiFi's APs
 - Conversation Detection:
 - Sleep Detection: duration

StudentLife Data Gathering Study Overview

Figure 2. StudentLife app, sensing and analytics system architecture.

Clinical Mental Health Questionnaires

- MobileEMA popped up mental health questionnaires (widely used by psychologists, therapists, etc), provides labelled data
 - Patient Health Questionnaire (PHQ-9) ۲
 - Measures depression level
 - **Perceived Stress Scale**
 - Measures Stress level

Flourishing Scale

Measures self-perceived success in relationships, self-esteem, etc

UCLA loneliness survey

Measures loneliness (common in freshmen, int'l students)

(b) Stress EMA

Study Details

- 60 Students started study
 - All enrolled in CS65 Smartphone Programming class
 - 12 students dropped class during study
 - 30 undergrad/18 graduate level
 - 38 male/10 female
- Incentives:
 - StudentLife T-shirt (all students)
 - Week 3 & 6: 5 Jawbone UPs (like fitbit) raffled off
 - End of study: 10 Google Nexus phones in raffle
- 10 weeks of data collection

Correlation Analysis

- Compute correlation between smartphone-sensed features and various questionnaire scores, GPA, etc
- E.g. correlation between sensor data and PHQ-9 depression score, GPA

Table 3. Correlations between automatic sensor data and PHQ-9 depression scale.

automatic sensing data	r	p-value
sleep duration (pre)	-0.360	0.025
sleep duration (post)	-0.382	0.020
conversation frequency during day (pre)	-0.403	0.010
conversation frequency during day (post)	-0.387	0.016
conversation frequency during evening (post)	-0.345	0.034
conversation duration during day (post)	-0.328	0.044
number of co-locations (post)	-0.362	0.025

Some Findings

- Fewer conversations or co-locations correlate with
 - Higher chance of depression
- Higher stressed correlated with
 - Higher chance of depression
- More social interactions correlated with
 - Higher flourishing, GPA scores
 - Lower stress
- More sleep correlates with
 - Lower stress

Findings (cont'd)

- Less sleep?
 - Higher chance of depression
- Less activity?
 - More likely to be lonely, lower GPAs
- No correlation between class attendance and academic performance (Hmm...)
- As term progressed:
 - Positive affect and activity duration plummeted

Findings (cont'd)

 Plotted total values of sensed data, EMA etc for all subjects through the term

(b) Automatic sensing data

(c) Location-based data

Study Limitations/Trade Offs

- Sample Selection
 - Voluntary CS65 Smartphone Programming class (similar to CS 4518)
- User participation
 - Burden: Surveys, carrying phone
 - Disinterest (Longitudinal study, EMA annoyance)
- Lost participants
- Sleep measurement inaccuracy
 - Naps

MIT Epidemiological Change

Introduction

Ref: A. Madan, Social sensing for epidemiological behavior change, *in Proc Ubicomp 2010*

Epidemiology: The study of how infectious disease spreads in a population

- Face-to-face contact is primary means of transmission
- Understanding behavior is key to modeling, prediction, policy

Research Questions

- Can smartphone reliably detect sick owner?
 - Based on sensable behavior changes (movement patterns, etc)
- **Q1:** How do physical and mental health symptoms manifest themselves as behavioral patterns?
 - E.g. worsening cold = reduced movement?

• **Q2:** Given sensed behavioral pattern (e.g. movement), can smartphone user's symptom/ailment be reliably inferred?

Potential Uses of Smartphone Sickness Sensing

- Early warning system (not diagnosis)
 - Doesn't have to be so accurate
- Just flag "potentially" ill student, nurse calls to check up
- Insurance companies can reduce untreated illnesses that result in huge expenses

General Approach

- Semester-long Study of 70 MIT Students
 - Continuously gather sensable signs (movement, social interactions, etc)
 - Administer sickness/symptom questionnaires periodically as pop-ups (EMA)
- Labeling: what movement pattern, social interaction level = what illness, symptom

Methodology

- 70 residents of an MIT dorm
- Windows-Mobile device
- Daily Survey (symptom data)
- Sensor-based Social Interaction Data
- 10 weeks
 - Date: 02/01/2009 04/15/2009
 - Peak influenza months in New England

Methodology (Symptom Data)

- Daily pop-up survey
- 6AM every day respond to symptom questions

Table 1. Symptom Survey Questionnaire. All questions were Yes/No responses

Survey Question (as shown on mobile phone)

Do you have a sore throat or cough?

Do you have a runny nose, congestion or sneezing?

Do you have a fever?

Have you had any vomiting, nausea or diarrhea? Have you been feeling sad, lonely or depressed lately?

lately?

Have you been feeling stressed out lately?

Methodology (Social Interaction Data)

- SMS and Call records (log every 20 minutes)
 - Communication patterns
 - Time of communication (e.g. Late night / early morning)
 - E.g. may talk more on the phone early or late night when in bed with cold
- Tracked number of calls/SMS, and with who (diversity)
 - E.g. sick people may communicate with/seeing same/usual people or new people (e.g. nurse, family?)
 - Intensity of ties, size and dynamics of social network
 - Consistency of behavior

Analyze Syndrome/Symptom/Behavioral Relationships

Data Analysis

- Behavior effects of CDC-defined influenza (Flu)
 - Flu is somewhat serious, communication, movement generally

(a) Total Bluetooth interactions and entropy decrease **

(b) Late night early morning Bluetooth entropy with respect to other participants decreases **

(c) WLAN based entropy with respect to university WLAN APs decreases ***

(d) WLAN Entropy with respect to external WLAN APs decreases ***

Data Analysis

- Behavior effects of runny nose, congestion, sneezing symptom (mild illness)
 - Cold is somewhat mild, communication, movement generally increased

(a) Total communication increases ***

(b) Latenight early morning communication increases **

(c) Overall Bluetooth entropy decreases *

(d) Total WLAN APs detected increase **

R

Results: Conclusion

- **Conclusion:** Behavioral changes are identified as having statistically significant association with reported symptoms.
- Can we classify illness, likely symptoms based on observed behaviors?
- Why? Detect variations in behavior -> identify likelihood of symptom and take action

Symptom Classification using Behavioral Features

- Yes!!
- Bayes Classifier w/MetaCost for misclassification penalty

1.0

0.8

0.6

0.4

0.2

0.0

2

З

MetaCost misclassification penalty

5

6

• 60% to 90% accuracy!!

Common Colds

Conclusion

- Mobile phone successfully used to sense behavior changes from cold, influenza, stress, depression
- Demonstrated the ability to predict health status from behavior, without direct health measurements
- Opens avenue for real-time automatic identification and improved modeling
- Led to startup Ginger io (circa 2012)
 - Patients tracked, called by real physician when ill
 - funded > \$25 million till date

Affect Detection

MoodScope: Detecting Mood from Smartphone Usage Patterns (Likamwa *et al*)

- Define Mood based on Circumplex model in psychology
- Each mood defined on pleasure, activeness axes
 - Pleasure: how positive or negative one feels
 - Activeness: How likely one is to take action (e.g. active vs passive)

Figure 1: The circumplex mood model

Classification

 Moodscope: classifies user mood from smartphone usage patterns

Data type	Features
Email contacts	#messages #characters
SMS contacts	#messages #characters
Phone call contacts	#calls call duration
Website domains	#visits
Location clusters	#visits
Apps	#app launches app duration
Categories of apps	#app launches app duration

Mood

Smartphone usage features

MoodScope Study

- 32 Participants logged their moods periodically over 2 months
- Used mood journaling application
- Subjects: 25 in China, 7 in US, Ages 18-29

Figure 2: Mood journaling application view

MoodScope: Results

- Multi-linear regression
- 66% accuracy using general model (1 model for everyone)
- 93% accuracy, personalized model after 2 months of training
- Top features?
 - Communication
 - SMS
 - Email
 - Phone Calls
 - To whom?
 - # messages
 - Length/Duration
- Consider "Top 10" Histograms How many phone calls were made to #1? #2? ... #10? How much time was spent on calls to #1? #2? ... #10?

Next Week: Project Proposal

Final Project Proposal

http://web.cs.wpi.edu/~emmanuel/courses/cs528/F18/projects/final_project/

- 15-min Proposal Pitch (8/30 of project grade)
 - a) what problem your app/machine learning classification/regression will tackle
 - b) Why that problem is important and
 - c) Review of other similar work/apps
 - d) Summary of how your app will work/solve this problem.
 - e) Implementation plan
 - **App:** Android Modules used, software architecture, screen mockups or sketches and timeline with who will do what.)
 - Machine learning project: what dataset(s) you will utilize or how you will run a study to gather data.

Final Project Proposal

http://web.cs.wpi.edu/~emmanuel/courses/cs528/F18/projects/final_project/

- Use Powerpoint template for your presentation
- Mail me your presentation slides after your talk (due 11.59PM) next week
- See proposal website for more details (rubric, etc)
- Ask me if you are confused about any aspect

