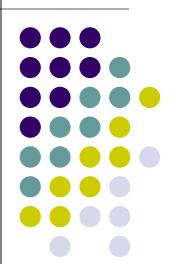
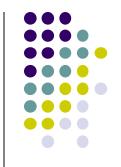
# CS 528 Mobile and Ubiquitous Computing

Lecture 8b: Voice Analytics, Affect Detection & Energy Efficiency

### **Emmanuel Agu**





## **Voice-Based/Speech Analytics**

### **Voice Based Analytics**

- Voice can be analyzed, lots of useful information extracted
  - Who is talking? (Speaker identification)
  - How many social interactions a person has a day
  - Emotion of person while speaking
  - Anxiety, depression, intoxication, of person, etc.
- For speech recognition, voice analytics used to:
  - Discard useless information (background noise, etc)
  - Extract information useful for identifying linguistic content







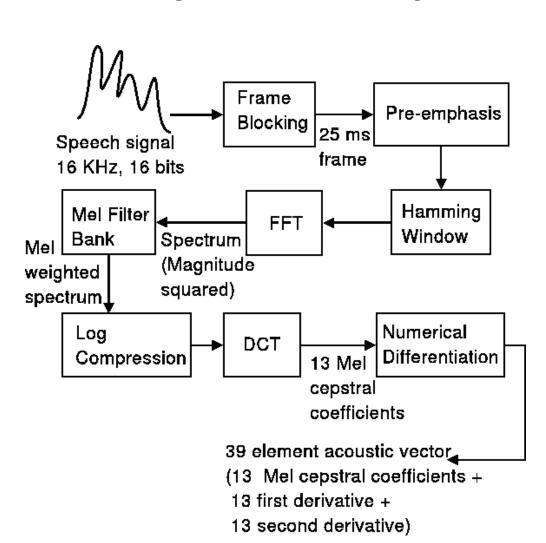
- MFCCs widely used in speech and speaker recognition for representing envelope of power spectrum of voice
- Popular approach in Speech recognition
  - MFCC features + Hidden Markov Model (HMM) classifiers

### **MFCC Steps: Overview**



- Frame the signal into short frames.
- 2. For each frame calculate the periodogram estimate of the power spectrum.
- 3. Apply the mel filterbank to the power spectra, sum the energy in each filter.
- 4. Take the logarithm of all filterbank energies.
- 5. Take the DCT of the log filterbank energies.
- 6. Keep DCT coefficients 2-13, discard the rest.

## **MFCC Computation Pipeline**





### **Step 1: Windowing**

- Audio is continuously changing.
- Break into short segments (20-40 milliseconds)
- Can assume audio does not change in short window

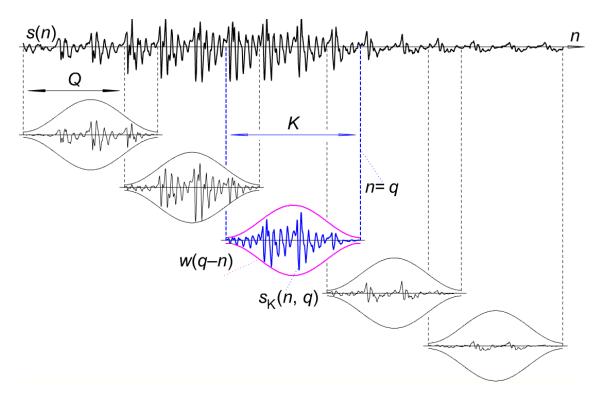


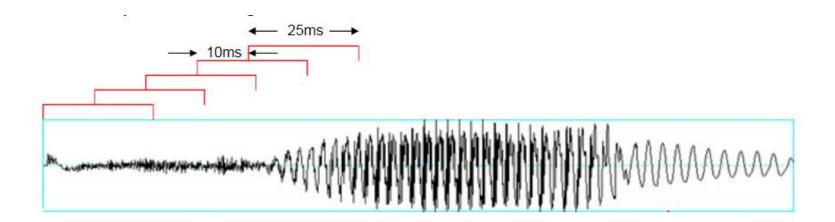


Image credits: http://recognize-speech.com/preprocessing/cepstral-mean-normalization/10-preprocessing





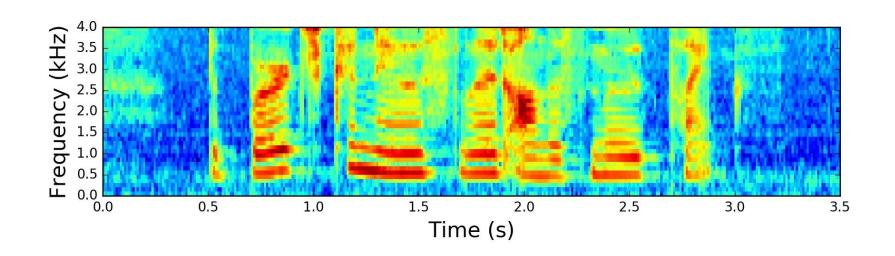
- Essentially, break into smaller overlapping frames
- Need to select frame length (e.g. 25 ms), shift (e.g. 10 ms)



 So what? Can compare frames from reference vs test words (i.e. calculate distances between them)

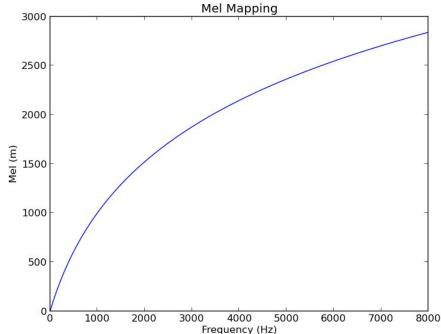
### **Step 2: Calculate Power Spectrum of each Frame**

- Cochlea (Part of human ear) vibrates at different parts depending on sound frequency
- Power spectrum Periodogram similarly identifies frequencies present in each frame



### **Background: Mel Scale**

- Transforms speech attributes (frequency, tone, pitch) on non-linear scale based on human perception of voice
  - Result: non-linear amplification, MFCC features that mirror human perception
  - E.g. humans good at perceiving small change at low frequency than at high frequency

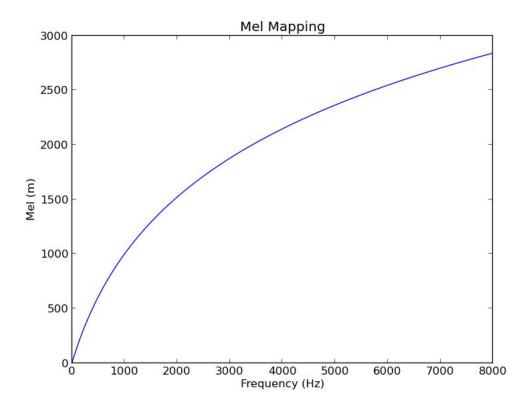






Non-linear conversion from frequency to Mel Space

$$M(f) = 1125 \ln(1 + f/700) \tag{1}$$







- Take log of filterbank energies at each frequency
- This step makes output mimic human hearing better
  - We don't hear loudness on a linear scale
  - Changes in loud noises may not sound different

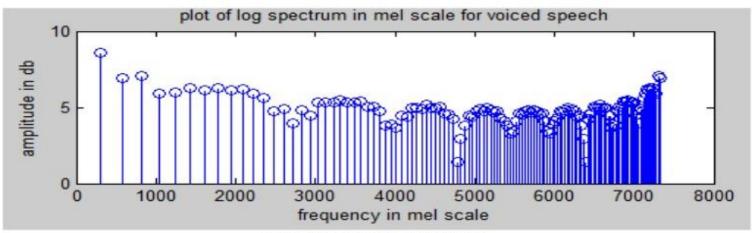


Fig.7. Spectrum of voiced speech



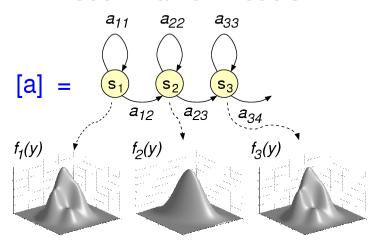


- Step 5: DCT of log filterbank:
  - There are correlations between signals at different frequencies
  - Discrete Cosine Transform (DCT) extracts most useful and independent features
- Final result: 39 element acoustic vector used in speech processing algorithms



- Human speech can be broken into phonemes
- Example of phoneme is /k/ in the words (cat, school, skill)
- Speech recognition tries to recognize sequence of phonemes in a word
- Typically uses Hidden Markov Model (HMM)
  - Recognizes letters, then words, then sentences

Hidden Markov Models



### **Audio Project Ideas**

- OpenAudio project, <a href="http://www.openaudio.eu/">http://www.openaudio.eu/</a>
- Many tools, dataset available
  - OpenSMILE: Tool for extracting audio features
    - Windowing
    - MFCC
    - Pitch
    - Statistical features, etc
    - Supports popular file formats (e.g. Weka)
  - OpenEAR: Toolkit for automatic speech emotion recognition
  - iHeaRu-EAT Database: 30 subjects recorded speaking while eating



### **Affect Detection**

### **Definitions**

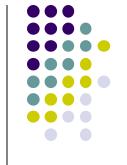
- Affect
  - Broad range of feelings
  - Can be either emotions or moods

### Emotion

- Brief, intense feelings (anger, fear, sadness, etc)
- Directed at someone or something

### Mood

- Less intense, not directed at a specific stimulus
- Lasts longer (hours or days)



### **Physiological Measurement of Emotion**

- Biological arousal: heart rate, respiration, perspiration, temperature, muscle tension
- Expressions: facial expression, gesture, posture, voice intonation, breathing noise

| Emotion   | Physiological Response                                  |  |  |
|-----------|---------------------------------------------------------|--|--|
| Anger     | Increased heart rate, blood vessels bulge, constriction |  |  |
| Fear      | Pale, sweaty, clammy palms                              |  |  |
| Sad       | Tears, crying                                           |  |  |
| Disgust   | Salivate, drool                                         |  |  |
| Happiness | Tightness in chest, goosebumps                          |  |  |

# Affective State Detection from Facial + Head Movements

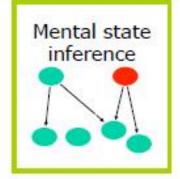


Facial feature extraction

Head pose estimation



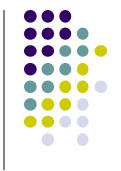




Feature point tracking Hmm ... Let me think about this





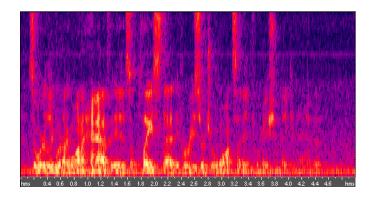


- MFCC widely used for analysis of speech content, Automatic Speaker Recognition (ASR)
  - Who is speaking?
- Other audio features exist to capture sound characteristics (prosody)
  - Useful in detecting emotion in speech
- Pitch: the frequency of a sound wave. E.g.
  - Sudden increase in pitch => Anger
  - Low variance of pitch => Sadness



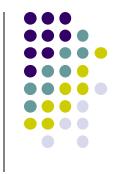


- Intensity: Energy of speech, intensity. E.g.
  - Angry speech: sharp rise in energy
  - Sad speech: low intensity
- Temporal features:
  - Speech rate, voice activity (e.g. pauses)
  - E.g. Sad speech: slower, more pauses



 Other emotion features: Voice quality, spectrogram, statistical measures

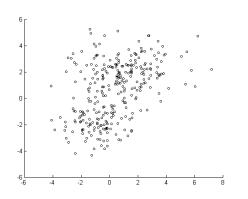


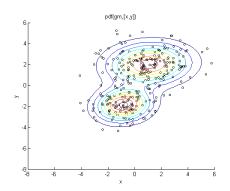


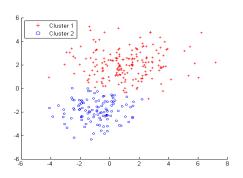
 GMM used to classify audio features (e.g. depressed vs not depressed)

### General idea:

- Plot subjects in a multi-dimensional feature space
- Cluster points (e.g. depressed vs not depressed)
- Fit to gaussian distribution (assumed)







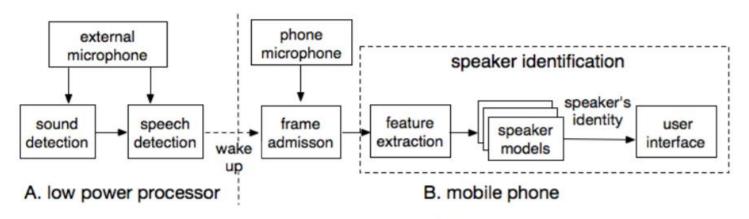
# Uses of Affect Detection E.g. Using Voice on Smartphone



- Audio processing (especially to detect affect, mental health)
  can revolutionize healthcare
  - Detection of mental health issues automatically from patients voice
  - Population-level (e.g campus wide) mental health screening
  - Continuous, passive stress monitoring
    - Suggest breathing exercises, play relaxing music
  - Monitoring social interactions, recognize conversations (number and duration per day/week, etc)

### Voice Analytics Example: SpeakerSense (Lu et al)

- Identifies speaker, who conversation is with
- Used GMM to classify pitch and MFCC features



**Fig. 1**. The SpeakerSense architecture.





- Detected stress in speaker's voice
- Features: MFCC, pitch, speaking rate
- Classification using GMM
- Accuracy: indoors (81%), outdoors (76%)



### **Voice Analytics Example: Mental Illness Diagnosis**

- What if depressed patient lies to psychiatrist, says "I'm doing great"
- Mental health (e.g. depression) detectable from voice
- Doctors pay attention to speech aspects when examining patients

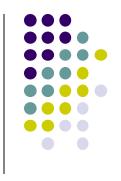
| Category            | Patterns                          |
|---------------------|-----------------------------------|
| Rate of speech      | slow, rapid                       |
| Flow of speech      | hesitant, long pauses, stuttering |
| Intensity of speech | loud, soft                        |
| Clarity             | clear, slurred                    |
| Liveliness          | pressured, monotonous, explosive  |
| Quality             | verbose, scant                    |

 E.g. depressed people have slower responses, more pauses, monotonic responses and poor articulation



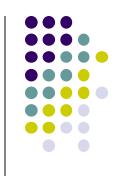
# Detecting Boredom from Mobile Phone Usage, Pielot *et al*, Ubicomp 2015

### Introduction



- 43% of time, people seek self-stimulation
  - Watch YouTube videos, web browsing, social media
- Boredom: Periods of time when people have abundant time, seeking stimulation
- Paper Goal: Develop machine learning model to infer boredom based on features related to:
  - Recency of communication
  - Usage intensity
  - Time of day
  - Demographics

### **Motivation**



If boredom can be detected, opportunity to:

- Recommend content, services, or activities that may help to overcome the boredom
  - E.g. play video, recommend an article
- Suggesting to turn their attention to more useful activities
  - Go over to-do lists, etc

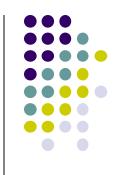
"Feeling bored often goes along with an urge to escape such a state. This urge can be so severe that in one study ... people preferred to self-administer electric shock rather than being left alone with their thoughts for a few minutes" - Pielot et al, citing Wilson et al





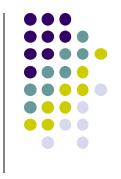
- Bored Detection
  - Expression recognition (Bixler and D'Mello)
  - Emotional state detection using physiological sensors (Picard et al)
  - Rhythm of attention in the workplace (Mark et al)
- Inferring Emotions
  - Moodscope: Detect mood from communications and phone usage (LiKamWa et al)
  - Infer happiness and stress phone usage, personality traits and weather data (Bogomolov et al)

### Methodology

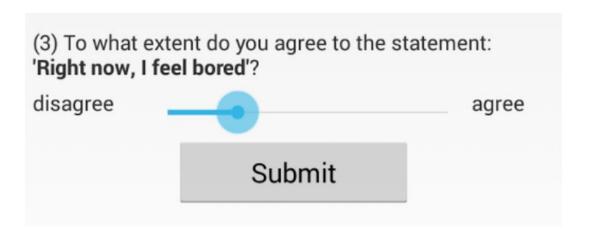


- 2 short Studies
- Study 1
  - Does boredom measurably affect phone use?
  - What aspects of mobile phone usage are most indicative of boredom?
- Study 2
  - Are people who are bored more likely to consume suggested content on their phones?

### Methodology: Study 1



- Created data collection app Borapp
  - 54 participants for at least 14 days
    - Self-reported levels of boredom on a 5-point scale
      - Probes when phone in use + at least 60 mins after last probe
    - App collected sensor data, some sensor data at all times, others just when phone was unlocked

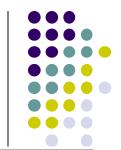




- **Assumption:** Short infrequent activity = less goal oriented
- Extracted 35 features, in 7 categories
  - Context
  - Demograpics
  - Time since last activity
  - Intensity of usage
  - External Triggers
  - Idling

|                          | <u> </u>                                                                       |  |  |  |
|--------------------------|--------------------------------------------------------------------------------|--|--|--|
| Context                  |                                                                                |  |  |  |
| audio                    | Indicates whether the phone is connected to a headphone or a bluetooth speaker |  |  |  |
| charging                 | Whether the phone is connected to a charger or not                             |  |  |  |
| day_of_week              | Day of the week (0-6)                                                          |  |  |  |
| hour_of_day              | Hour of the day (0-23)                                                         |  |  |  |
| light                    | Light level in lux measured by the proximity sensor                            |  |  |  |
| proximity                | Flag whether screen is covered or not                                          |  |  |  |
| ringer_mode              | Ringer mode (silent, vibrate, normal)                                          |  |  |  |
| semantic_location        | Home, work, other, or unknown                                                  |  |  |  |
| Demographics             |                                                                                |  |  |  |
| age                      | The participant's age in years                                                 |  |  |  |
| gender                   | The participant's gender                                                       |  |  |  |
| Last Communication Activ | ity                                                                            |  |  |  |
| time_last_incoming_call  | Time since last incoming phone call                                            |  |  |  |
| time_last_notif          | Time since last notification (excluding Borapp probe)                          |  |  |  |
| time_last_outgoing_call  | Time since the user last made a phone call                                     |  |  |  |
| time_last_SMS_read       | Time since the last SMS was read                                               |  |  |  |
| time_last_SMS_received   | Time since the last SMS was received                                           |  |  |  |
| time last SMS sent       | Time since the last SMS was sent                                               |  |  |  |

Table 3. List of features related to context, demographics, and time since last communication activity.



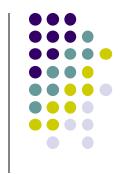
### **Study 1: Features Extracted (Contd)**

- Extracted 35 features, in 7 categories
  - Context
  - Demograpics
  - Time since last activity
  - Intensity of usage
  - External Triggers
  - Idling

| Usage (related to usage int   | ensity)                                                                                  |  |  |  |
|-------------------------------|------------------------------------------------------------------------------------------|--|--|--|
| battery_drain                 | Average battery drain in time window                                                     |  |  |  |
| battery_level                 | Battery change during the last session                                                   |  |  |  |
| bytes_received                | Number of bytes received during time window                                              |  |  |  |
| bytes_transmitted             | Number of bytes transmitted during time window                                           |  |  |  |
| time_in_comm_apps             | Time spent in communication apps, categorized to none<br>micro session, and full session |  |  |  |
| Usage (related to whether i   | it was triggered externally)                                                             |  |  |  |
| num_notifs                    | Number of notifications received in time window                                          |  |  |  |
| last_notif                    | Name of the app that created the last notification                                       |  |  |  |
| last_notif_category           | Category of the app that created the last notification                                   |  |  |  |
| Usage (related to the user l  |                                                                                          |  |  |  |
| apps per min                  | Number of apps used in time-window divided by time the screen was on                     |  |  |  |
| num_apps                      | Number of apps launched in time window before probe                                      |  |  |  |
| num_unlock                    | Number of phone unlocks in time window prior to prob                                     |  |  |  |
| time_last_notif_access        | Time since the user last opened the notification center                                  |  |  |  |
| time_last_unlock              | Time since the user last unlocked the phone                                              |  |  |  |
| Usage (related to the type of |                                                                                          |  |  |  |
| screen_orient_changes         | Flag whether there have been screen orientation changes in the time window               |  |  |  |
| app_category_in_focus         | Category of the app in focus prior to the probe                                          |  |  |  |
| app_in_focus                  | App that was in focus prior to the probe                                                 |  |  |  |
| comm_notifs_in_tw             | received in the time window prior to the probe                                           |  |  |  |
| most_used_app                 | Name of the app used most in the time window                                             |  |  |  |
| most_used_app_category        | Category of the app used most in the time window                                         |  |  |  |
| prev app in focus             | App in focus prior to app in focus                                                       |  |  |  |

Table 4. List of features related to usage intensity, external trigger, idling and type.

### **Results: Study 1**



- Machine-learning to analyze sensor and self-reported data and create a classification model
  - Compared 3 classifier types
    - Logistic Regression
    - SVM with radial basis kernel
    - Random Forests
    - Random Forests performed the best (82% accuracy) and was used
  - Feature Analysis
    - Ranked feature importance
    - Selected top 20 most important features of 35
  - Personalized model: 1 classification model for each person

## Results: Study 1, Most Important Features

- Recency of communication activity: last SMS, call, notification time
- Intensity of recent usage: volume of Internet traffic, number of phonelocks, interaction level in last 5 mins
- General usage intensity: battery drain, state of proximity sensor, last time phone in use
- Context/time of day: time of day, light sensor
- **Demographics:** participant age, gender

| Feature                  | Import | Correlation     | The more bored, the  |
|--------------------------|--------|-----------------|----------------------|
| time_last_outgoing_call  | 0.0607 | -0.143          | less time passed     |
| time_last_incoming_call  | 0.0580 | 0.088           | more time passed     |
| time_last_notif          | 0.0564 | 0.091           | more time passed     |
| time_last_SMS_received   | 0.0483 | 0.053           | more time passed     |
| time_last_SMS_sent       | 0.0405 | -0.090          | less time passed     |
| time_last_SMS_read       | 0.0388 | -0.013          | less time passed     |
| light                    | 0.0537 | -0.010          | darker               |
| hour_of_day              | 0.0411 | 0.038           | later                |
| proximity                | 0.0153 | -0.186          | less covered         |
| gender (0=f, 1=m)        | 0.0128 | 0.099           | more male (1)        |
| age                      | 0.0093 | n.a.            | +20s/40s, -30s       |
| num_notifs               | 0.0123 | 0.061           | more notifications   |
| time_last_notif_cntr_acc | 0.0486 | <b>[</b> -0.015 | less time passed     |
| time_last_unlock         | 0.0400 | -0.007          | less time passed     |
| apps_per_min             | 0.0199 | 0.024           | more apps per minute |
| num_apps                 | 0.0124 | 0.049           | more apps            |
| bytes_received           | 0.0546 | -0.012          | less bytes received  |
| bytes_transmitted        | 0.0500 | [0.039          | more bytes sent      |
| battery_level            | 0.0268 | 0.012           | the higher           |
| battery_drain            | 0.0249 | <b>[</b> -0.014 | the lower            |

# **Results: Study 1**

- Could predict boredom ~82% of the time
- Found correlation between boredom and phone use
- Found features that indicate boredom





Now that we can predict when people are bored.

Are bored people more likely to consume suggested content?



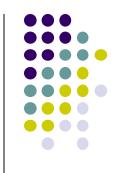
# Methodology: Study 2

- Created app Borapp2
- 16 new participants took part in a quasi-experiment
  - When participant was bored, app suggested newest Buzzfeed article
- Buzzfeed has articles on various topics including politics, DIY, recipes, animals and business



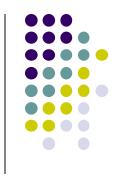






- Click-ratio: how often user opened Buzzfeed article / total number of notifications
- Engagement-ratio: How often user opened Buzzfeed article for at least 30 seconds / total number of notifications





#### **Click-Ratio**

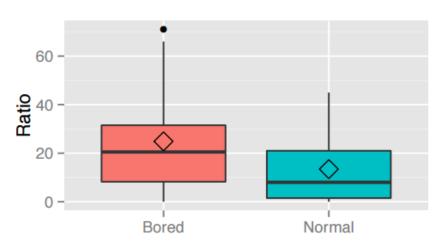


Figure 6. Click-ratio per condition.

#### **Engagement-Ratio**

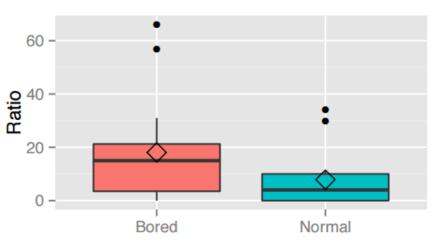


Figure 7. Engagement-ratio per condition.

 Preliminary findings: Bored Users were more likely to click on, and engage with suggested content



# Sandra Helps You Learn: The More you Walk, the More Battery Your phone drains, *Ubicomp 2015*

# **Problem: Continuous Sensing Applications Drain Battery Power**

C Min et al, Sandra Helps You Learn: the More you Walk, the More Battery Your Phone Drains, in Proc Ubicomp '15

- Battery energy is most constraining resource on mobile device
- Most resources (CPU, RAM, WiFi speed, etc) increasing exponentially except battery energy (ref. Starner, IEEE Pervasive Computing, Dec 2003)

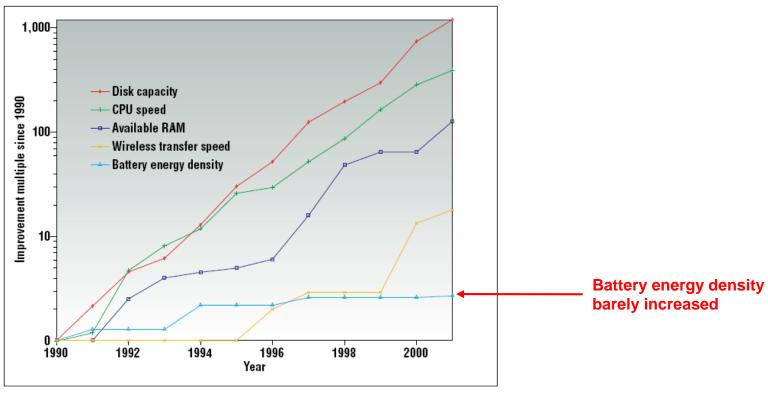
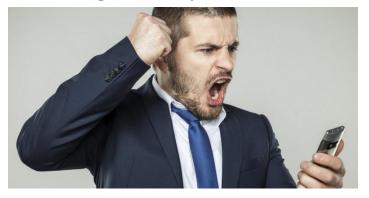


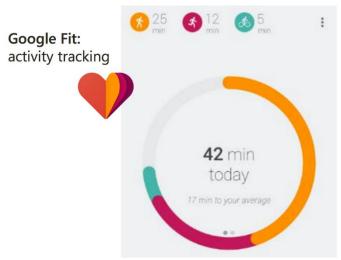
Figure 1. Improvements in laptop technology from 1990-2001.

# **Problem: Continuous Sensing Applications Drain Battery Power**

C Min et al, Sandra Helps You Learn: the More you Walk, the More Battery Your Phone Drains, in Proc Ubicomp '15

- CSAs (Continuous Sensing Apps) introduce new major factor's governing phones' battery consumption
  - E.g. Activity Recognition, Pedometer, etc.
- How? Persistent, mobility-dependent battery drain
  - Different user activities drain battery differently
  - E.g. battery drains more if user walks more







Moves: activity/place tracking



Accupedo: pedometer



**Dieter:** pedometer



# Sandra: Goal & Research Questions

- E.g. Battery at 26%. User's typical questions:
  - How long will phone last from now?
  - What should I do to keep my phone alive until I get home?
- Users currently informed on well-known factors draining battery faster
  - E.g. long calls, GPS, bright screen, weak cell signal, frequent app usage

### **Sandra: Goal & Research Questions**

- Users currently don't accurately understand CSAs battery drain or include it in their mental model of battery drain
  - CSA energy drain sometimes counter-intuitive
  - E.g. CSA drain is continuous but users think drain only during activity (e.g. walking)
  - Battery drain depends on activities performed by user
- Paper makes 2 specific contributions about energy drain of CSAs
  - 1. Quantifies CSA battery impact: Nonlinear battery drains of CSAs
  - 2. Investigates/corrects user's incorrect perceptions of CSAs' battery behaviors

# Sandra: Goal & Research Questions



- Battery information advisor (Sandra):
  - Helps users make connection between battery drain (including CSAs) and their activities
  - Forecasts battery drain under different future mobility conditions
    - E.g. (stationary, walking, transport) + (indoor, outdoor)
  - Maintains a history of past battery use under different mobility conditions

# First Step: Measure Battery Consumption of 4 CSAs



#### Google Fit:

Tracks user activity continuously (walking, cycling, riding, etc)

#### Moves:

 Tracks user activity (walking, cycling, running), places visited and generates a storyline

#### Dieter:

Fitness tracking app in Korea

#### Accupedo:

Pedometer app

# **Energy Consumed by CSAs under different mobility conditions**

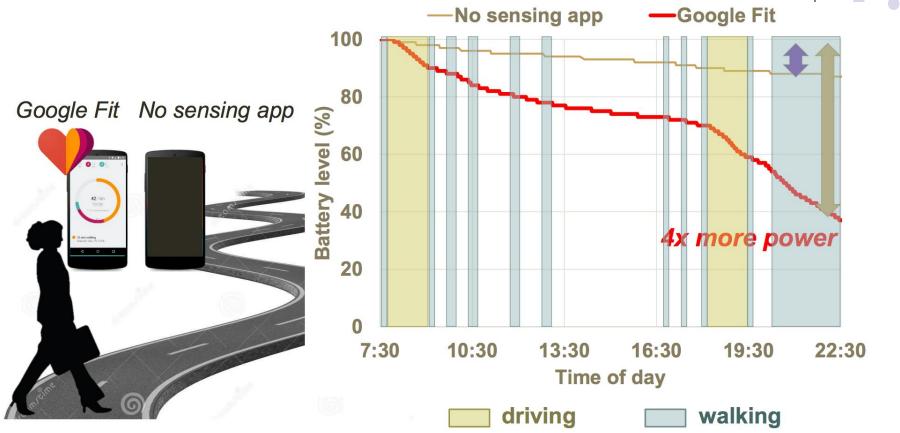


- CSAs drain extra stand-by power
- Average increase in battery drain: 171% vs No-CSA
- Drains 3x more energy when user is walking vs stationary



# **Day-long Battery Drain under real Life Mobility**



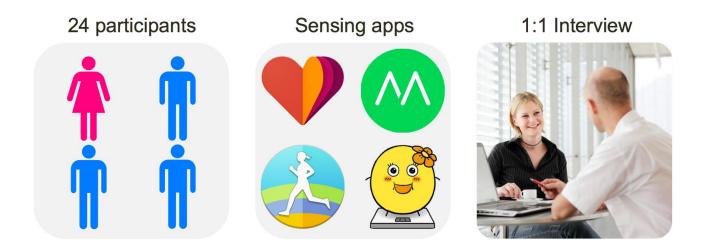


Also steeper battery drain when user is walking

Users may focus on only battery drain caused by their foreground interactions

# Next: Investigate User perceptions of CSAs' Battery Consumption





- Interviewed 24 subjects to understand factors influencing phone's battery life
- Questions included:
  - Do you feel concerned about phone's battery life?
  - Have you suspected that CSAs reduce battery life?

# Findings: Investigate User perceptions of CSAs' Battery Consumption



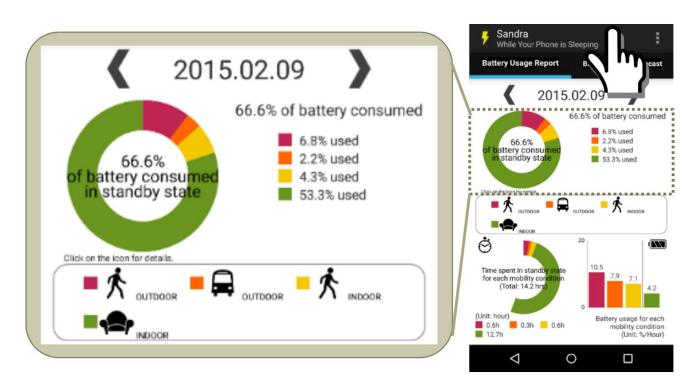
#### Subjects

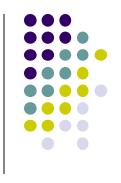
- Already knew well-known sources of battery drain (display, GPS, network, voice calls, etc)
- Felt battery drain should be minimal when phone is not in use
- Were very concerned about battery life. E.g. kept multiple chargers in office, home, car, bedside, etc
- Had limited, sometimes inaccurate understanding of details of CSA battery drain
- Disliked temporarily interrupting CSAs to save battery life.
  - E.g. Users kill battery hungry apps, but killing step counter misses steps, 10,000 step goals

### **Sandra Battery Advisor Design**

#### Goal:

- Educate users on mobility-dependent CSA battery drain
- Help users take necessary actions in advance
- Sandra Interfaces show breakdown of past battery use
- Battery usage information retrieved using Android system calls





## **Sandra Battery Advisor Design**

- Sandra interfaces that forecasts expected standby times for a commonly occurring mobility conditions
  - E.g. Walking indoors/outdoors, commuting outdoors, etc.



### Sandra Battery Advisor Design

- Sandra-lite version: less detailed
  - No mobility-specific breakdown of battery drain
  - Single standby life expectation





Breakdown of Past battery usage





Experimental Setup



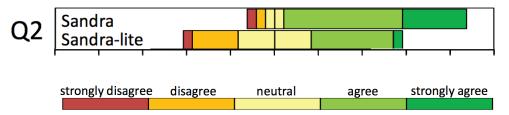
- First 10 days Sandra just gathered information (no feedback)
- Last 20 days gave feedback (forecasts, past usage breakdown)
- Surveyed users using 2 questionnaires for using Sandra and Sandra-lite
  - 5-point Likert-scales (Strongly Disagree, Disagree, Neutral, Agree, Strongly Agree)

### **Sandra Evaluation**

 Q1: "Did it bring changes to your existing understanding about your phone's stand-by battery drain?"



Q2: "Do you think the provided information is useful"



**Sandra vs Sandra-lite:** Mobility-aware battery information of Sandra increased users' existing understanding(p-value 0.023)



Realizing that the phone consumes different power

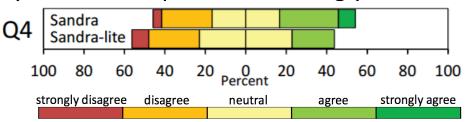


### **Sandra Evaluation**

Q3: "Did you find it helpful in managing your phone's battery?"



Q4: "Did you find it helpful in alleviating your battery concern?"



Mobility-aware battery information was perceived as useful (p-value= 0.005)

Acquiring new everyday practices: Turning off GoogleFit on driving



Feeling less nervous under limited battery: Before sleeping



