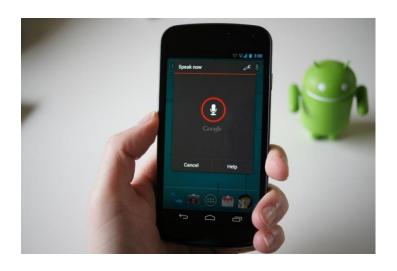

CS 528 Mobile and Ubiquitous Computing Lecture 7a: Other Android UbiComp Components, Tech Talk, Final Project Proposal & Smartphone Sensing

Emmanuel Agu

What other Android APIs may be useful for Mobile/ubicomp?

Speaking to Android

http://developer.android.com/reference/android/speech/SpeechRecognizer.html https://developers.google.com/voice-actions/

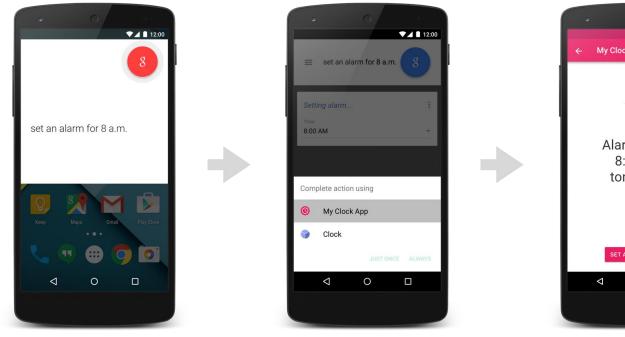

• Speech recognition:

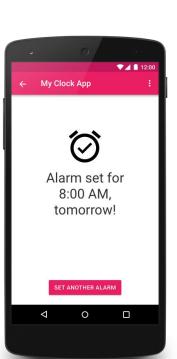
Accept inputs as speech (instead of typing) e.g. dragon dictate app?

Speech

to text

- Note: Requires internet access
- Two forms
 - 1. Speech-to-text
 - Convert user's speech to text. E.g. display voicemails in text
 - 2. Voice Actions: Voice commands to smartphone (e.g. set alarm)



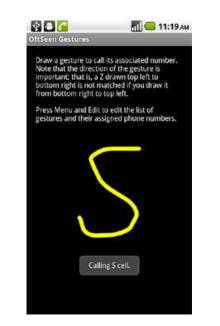


Google Voice Actions

https://developers.google.com/voice-actions/

• E.g. Tell Google to set an alarm





Gestures

https://developer.android.com/training/gestures/index.html http://www.computerworld.com/article/2469024/web-apps/android-gestures--3-cool-ways-to-control-yourphone.html

- Gesture: Hand-drawn shape on the screen
- Example uses:
 - Search your phone, contacts, etc by handwriting onto screen
 - Speed dial by handwriting first letters of contact's name
 - Multi-touch, pinching

More MediaPlayer & RenderScript

http://developer.android.com/guide/topics/renderscript/compute.html https://developer.android.com/reference/android/media/MediaRecorder

- MediaRecorder is used to record audio
 - Manipulate raw audio from microphone/audio hardware, PCM buffers
 - E.g. if you want to do audio signal processing, speaker recognition, etc
 - **Example:** process user's speech, detect emotion, nervousness?
 - Can playback recorded audio using MediaPlayer

RenderScript

- High level language for computationally intensive tasks/GPGPU,
- Can be used to program phone CPU, GPU in a few lines of code
- Use Phone's Graphics Processing Unit (GPU) for computational tasks
- Useful for heavy duty tasks. E.g. image processing, computational photography, or computer vision

Wireless Communication

http://developer.android.com/guide/topics/connectivity/bluetooth.html http://developer.android.com/reference/android/net/wifi/package-summary.html

Bluetooth

- Discover, connect to nearby bluetooth devices
- Communicating over Bluetooth
- Exchange data with other devices

• WiFi

- Scan for WiFi hotspots
- Monitor WiFi connectivity, Signal Strength (RSSI)
- Do peer-to-peer (mobile device to mobile device) data transfers

Wireless Communication

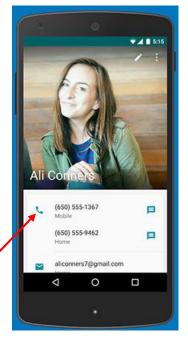
http://developer.android.com/guide/topics/connectivity/nfc/index.html

• NFC:

- Contactless, transfer small amounts of data over short distances
- Applications: Share spotify playlists, Google wallet
- Android Pay
 - Store debit, credit card on phone
 - Pay by tapping terminal

Telephony and SMS

http://developer.android.com/reference/android/telephony/package-summary.html http://developer.android.com/reference/android/telephony/SmsManager.html


• Telephony:

- Initiate phone calls from within app
- Access dialer app, etc

• SMS:

- Send/Receive SMS/MMS from app
- Handle incoming SMS/MMS in app

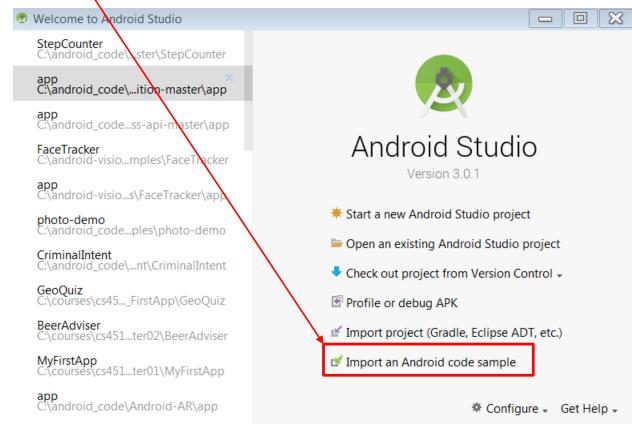
Dialer

SMS



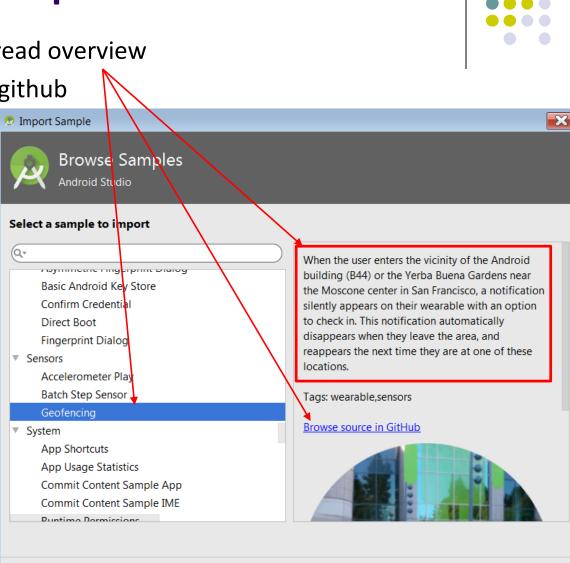
Google Play Services: Nearby Connections API

https://developers.google.com/nearby/connections/overview


- Peer-to-peer networking API, allows devices communicate over a LAN
- Allows one device to serve as host, advertise
- Other devices can discover host, connect, disconnect
- Use case: Multiplayer gaming, shared virtual whiteboard
- Good tutorial by Paul Trebilcox-Ruiz

https://code.tutsplus.com/tutorials/google-play-services-using-the-nearby-connections-api--cms-24534?_ga=2.245472388.1231785259.1517367257-742912955.1516999489

Google Android Samples


- Android Studio comes with many sample programs
- Just need to import them

Google Android Samples

- Can click on any sample, read overview
- Source code available on github
- Tested, already working


Next

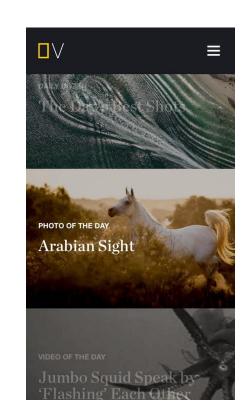
Cancel

Other 3rd Party Stuff

http://web.cs.wpi.edu/~emmanuel/courses/ubicomp_projects_links.html https://developer.qualcomm.com/software/trepn-power-profiler

• MPAndroid: Add charts to your app

- Trepn: Profile power usage and utilization of your app (CPU, GPU, WiFi, etc)
 - By Qualcomm



Other 3rd Party Stuff

http://web.cs.wpi.edu/~emmanuel/courses/ubicomp_projects_links.html

- **Programmable Web APIs:** 3rd party web content (e.g RESTful APIs) you can pull into your app with few lines of code
 - Weather: Weather channel, yahoo weather
 - Shared interests: Pinterest
 - Events: Evently, Eventful, Events.com
 - Photos: flickr, Tumblr
 - Videos: Youtube
 - Traffic info: Mapquest traffic, Yahoo traffic
- E.g. National Geographic: picture of the day

Student Presentation: Mobile Technologies

Talk: Mobile Technology

- GROUP to research, master and present on any TWO mobile technologies.
- Your talk should cover:
 - Background on the technology (tell a story about its history, etc)
 - Specific problems it's designed to solve
 - Typical example use case: When is it typically used?
 - Real world examples of where it is being used. E.g. by XYZ company for ABC
 - Overview of how it works?
 - Code snippet: Walk through a simple program that uses the technology including how to compile it and how to run it.

Talk on Mobile Technology

- Submit talk slides + working code
- To avoid duplicate presentations, each group email me their TWO topics by October 31, 2019
- This talk is 15% of your grade!
- The idea is to become expert, help any groups that need your help on that technology

Talk on Mobile Technology

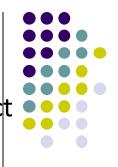
- Mobile programming/develpment:
 - Kotlin
 - iPhone development
 - 3rd part libraries: E.g. Xamarin
 - Mobile web programming
 - PhoneGap
 - AppInventor
 - Mobile game development tools: Unity,
- Machine/Deep Learning:
 - Deep Learning/machine learning in Android: Tensorflow, etc
 - Mobile machine/deep learning support in MATLAB
 - Keras support for Android Deep learning
 - Neural Networks API (NNAPI)

Talk on Mobile Technology

- More Google APIs (that could be used by mobile devices):
 - Analytics
 - Google Drive
 - Google Fit
 - Google Cast
 - Advertising: E.g. Adwords, Admobs
- More Android APIs:
 - Firebase (database, messaging, authentication, analytics, etc)
 - Speaking to Android (Speech recognition, Voice Actions)
 - Renderscript
 - Media Recorder
 - Wireless Communication: Bluetooth, WiFi, NFC, etc
 - Android Pay
 - Telephone/SMS
 - Nearby Connections API
 - Depth Sensing: Project Tango
 - Augmented Reality: ARtoolkit, vuforia, EasyAR

Final Project Proposal

Final Project Proposal


- While working on projects 3 & 4, also brainstorm on final project
- Oct 31, Propose mobile/ubicomp app, solves WPI problem or Machine learning
- Proposals should include:
 - 1. Problem you intend to work on
 - Solve WPI/societal problem (e.g. walking safe at night)
 - Use at least 3 mobile/ubicomp components (e.g. location, sensor or camera)
 - If games, must gamify solution to real world problem

2. Why this problem is important

- E.g. 37% of WPI students feel unsafe walking home
- Related Work: What prior solutions have been proposed for this problem

4. Summary of envisioned mobile app (?) solution

1. E.g. Mobile app automatically texts users friends when they get home at night

Final Project Proposal

- Can also do Machine learning project that classifies/detects analyzes a dataset of builds a real-time app to classify some human sensor data. E.g. Classifies
 - A speaker's voice to determine if nervous, sad, etc
 - A user's accelerometer data and recognizes their walk from 5-10 other people
 - A picture of a person's face and determines their mood
 - Data from a person's phone to measure their sleep duration or/and quality
 - Video of a person's face to detects their heart rate
 - A person's communication/phone usage patterns to detect their mood
- Can use existing smartphone datasets online
- See project difficulty points rubric
- Also propose evaluation plan
 - E.g. Small user study to evaluate app.
 - Can trade with another team: you review our app, we review yours
 - Machine learning performance metrics (e.g. classification accuracy, cross validation, etc)
- Can bounce ideas off me (email, or in person)
- Can change idea any time

Rubric: Grading Considerations

• Problem (10/100)

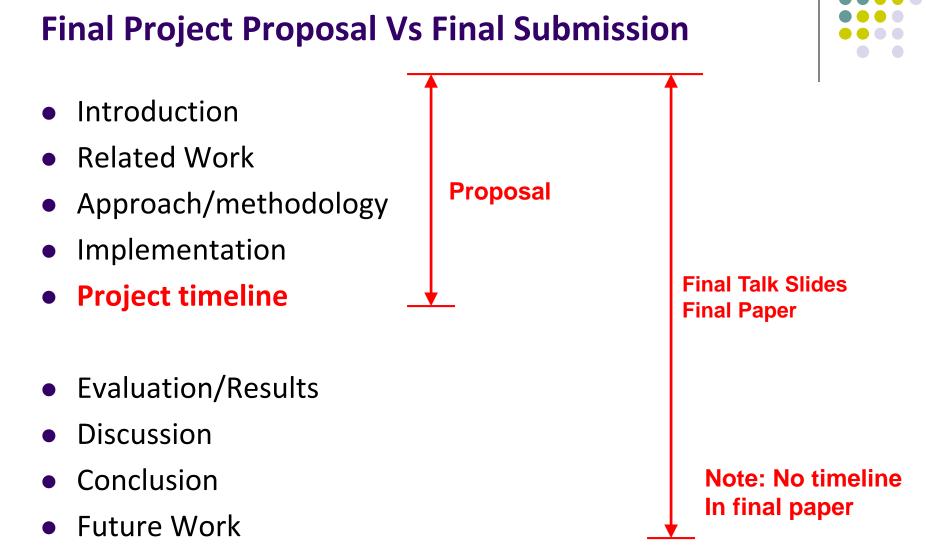
- How much is the problem a real problem (e.g. not contrived)
- Is this really a good problem that is a good fit to solve with mobile/ubiquitous computing? (e.g. are there better approaches?)
- How useful would it be if this problem is solved?
- What is the potential impact on the community (e.g. WPI students) (e.g. how much money? Time? Productivity.. Would be saved?)
- What is the evidence of the importance? (E.g. quote a statistic)

Related Work (10/100)

- What else as been done to solve this problem previously
- Proposed Solution/Classification (10/100)
 - How good/clever/interesting is the solution?
 - How sophisticated and how are the mobile/ubiquitous computing components (high level) used? (e.g. location, geofencing, activity recognition, face recognition, machine learning, etc)

Rubric: Grading Considerations

- Implementation Plan + Timeline (10/100)
 - Clear plans to realize your design/methodology
 - Android modules/3rd party software used
 - Software architecture,
 - Screenshots (or sketches of UI), or study design + timeline


Evaluation Plan (10/100)

- How will you evaluate your project.
- E.g. small user studies for apps
- Machine learning cross validation, etc
- 50 more points allotted for your slides + presentation

Final Project: Proposal Vs Final Submission (Presentation + Paper)

The Rest of the Class

The Rest of this class

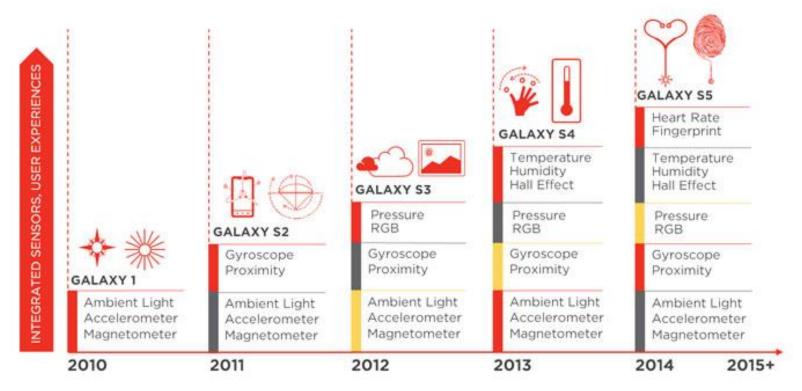
- Part 1: Course and Android Introduction
 - Introduce mobile computing, ubiquitous Computing, Android,
 - Basics of Android programming, UI, Android Lifecycle
- Part 2: Mobile and ubicomp Android programming
 - mobile Android components (location, Google Places, maps, geofencing)
 - Ubicomp Android components (camera, face detection, activity recognition, etc)
- Part 3: Mobile Computing/Ubicomp Research
 - Machine learning (classification) in ubicomp
 - Ubicomp research (smartphone sensing examples, human mood detection, etc) using machine learning
 - Mobile computing research (app usage studies, energy consumption, etc)

Smartphone Sensing

Smartphone Sensors

- Typical smartphone sensors today
 - accelerometer, compass, GPS, microphone, camera, proximity
- Use machine learning to classify sensor data

Future sensors?


- Heart rate monitor,
- Activity sensor,
- Pollution sensor,
- etc

Growth of Smartphone Sensors

• Every generation of smartphone has more and more sensors!!

Image Credit: Qualcomm

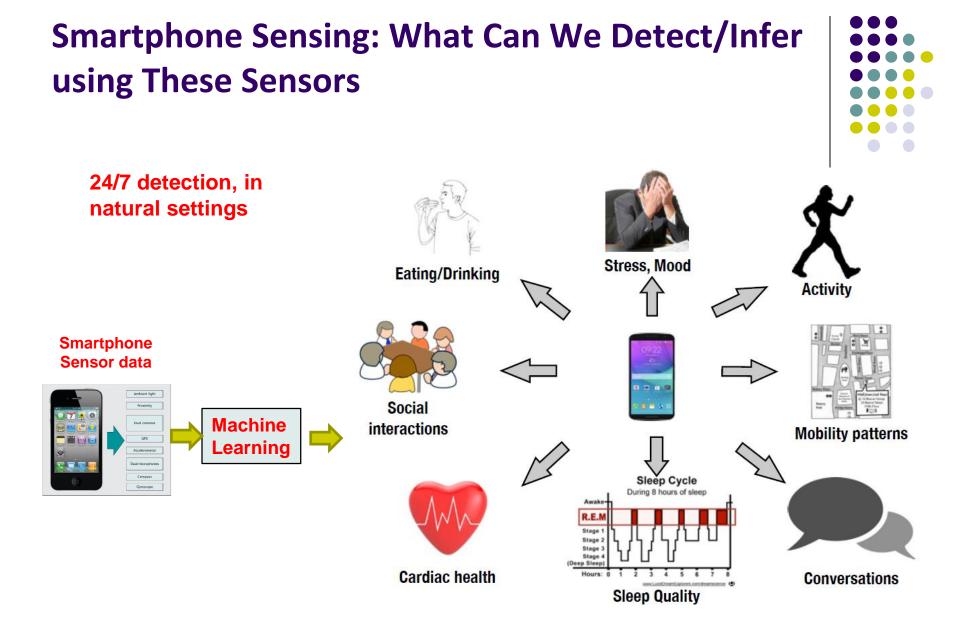
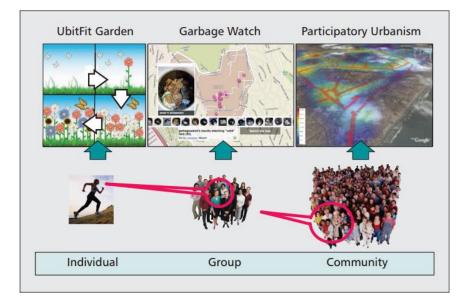


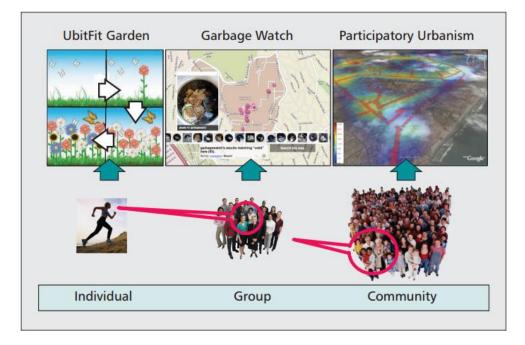
Image Credit: Deepak Ganesan, UMass


Sense What?

- Environmental: pollution, water levels in a creek
- **Transportation:** traffic conditions, road conditions, available parking
- **City infrastructure:** malfunctioning hydrants and traffic signs
- Social: photoblogging, share bike route quality, petrol price watch
- Health and well-being:
 - Share exercise data (amount, frequency, schedule),
 - share eating habits and pictures of food

Mobile CrowdSensing

- Mobile CrowdSensing: Sense collectively
- **Personal sensing:** phenomena for an individual
 - E.g: activity detection and logging for health monitoring
- Group: friends, co-workers, neighborhood
 - E.g. GarbageWatch recycling reports, neighborhood surveillance



Mobile CrowdSensing

• Community sensing (mobile crowdsensing):

- Large-scale phenomena monitoring
- Many people contribute their individual readings
- Examples: Traffic congestion, air pollution, spread of disease, migration pattern of birds, city noise maps

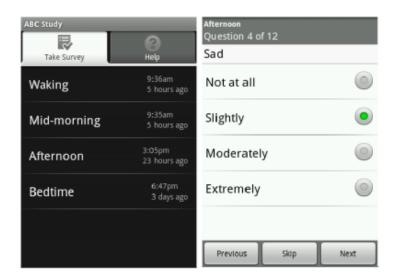
Mobile Crowd Sensing Types

- Many people cooperate, share sensed values
- 2 types:
 - Participatory Sensing: User manually enters sensed values (active involvement)
 - E.g. Comparative shopping: Compare price of toothpaste at CVS vs Walmart
 - Opportunistic Sensing: Mobile device automatically senses values (passive involvement)
 - E.g. Waze crowdsourced traffic

Smartphone Sensing Examples

Personal Sensing

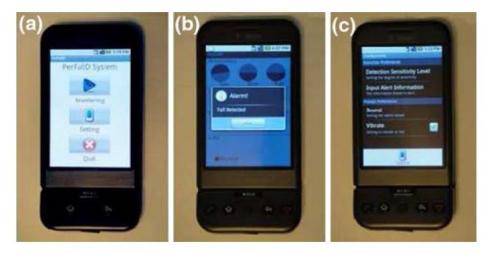
- Personal monitoring
- Focusing on user's daily life, physical activity (Khan et al.)
- Basically like Fitbit on your phone


AT NO WAY ----

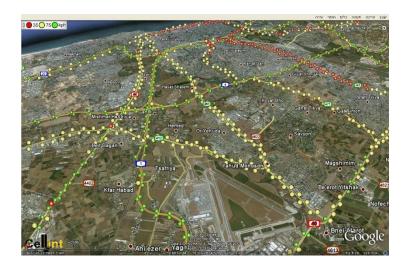
Other Examples of Personal Participatory Sensing

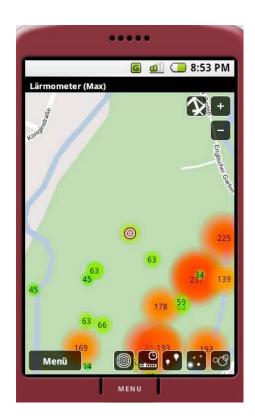
AndWellness

- "Personal data collection system"
- Active user-triggered experiences and surveys
- Passive recording using sensors
- UbiFit Garden
 - Uses smartphone sensors , real-time tracking, statistical modeling, and a personal, mobile display to encourage regular physical activity



Personal Opportunistic Sensing

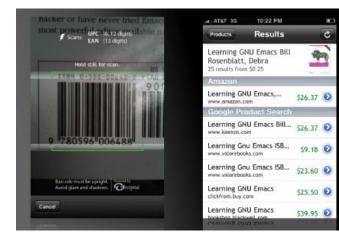

- PerFalld
 - Detects if user falls using sensor
 - Starts a timer if it detects that someone fell
 - If individual does not stop timer before it ends, emergency contacts are called



User interfaces in PerFallD: (a) bright, large virtual buttons on operating screen (b) clear alert window (c) simple, non-confusing preference screen

Public Sensing

- Data is shared with everyone for public good
- Traffic
- Environmental
 - Noise levels
 - Air pollution



Public Participatory Sensing

LiveCompare

- User-created database of UPCs and prices
- GPS and cell tower info used to find nearby stores
- PetrolWatch
 - Turns phone into fully automated dash-cam
 - Uses GPS to know when gas station is near

Public Participatory Sensing

• Pothole Monitor

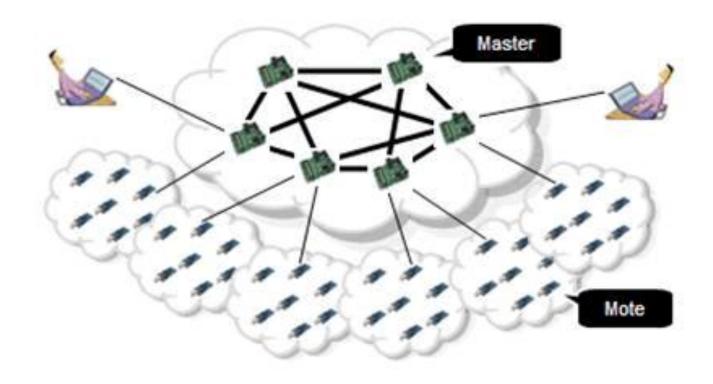
• Combines GPS and accelerometer

• Party Thermometer

• Asks you questions about parties

• Detects parties through GPS and microphone

Smartphone Sensing vs Dedicated Sensors




VS

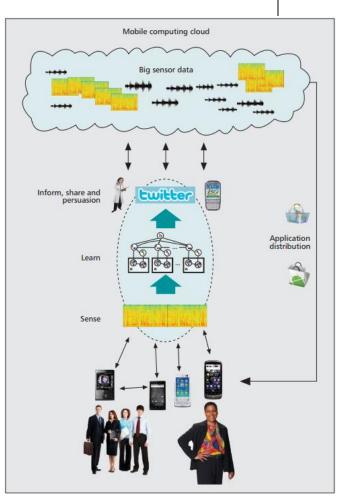
Background: Wireless Sensors for Environment Monitoring

- Embedded in room/environment
- Many sensors cooperate/communicate to perform task
- Monitors conditions (temperature, humidity, etc)
- User can query sensor (What is temp at sensor location?)

Sensing with Smartphones vs Dedicated Sensors

- More resources: Smartphones have much more processing and communication power
- **Easy deployment:** Millions of smartphones already owned by people
 - Instead of installing sensors in road, we detect traffic congestion using smartphones carried by drivers
 - Makes maintance easier. E.g. owner will charge their phone promptly
- Time-varying data: population of mobile devices, type of sensor data, accuracy changes often due to user mobility and differences between smartphones

Sensing with Smartphones vs Dedicated Sensors


- Reuse of few general-purpose sensors: While sensor networks use dedicated sensors, smartphones reuse relatively few sensors for widerange of applications
 - E.g. Accelerometers used in transportation mode identification, pothole detection, human activity pattern recognition, etc
- Human involvement: humans who carry smartphones can be involved in data collection (e.g. taking pictures)
 - Human in the loop can collect complex data
 - Incentives must be given to humans

Smartphone Sensing Architecture

Smartphone Sensing Architecture

- Paradigm proposed by Lane *et al*
- Sense: Phones collect sensor data
- Learn: Information is extracted from sensor data by applying machine learning and data mining techniques
- Inform, share and persuasion: inform user of results, share with group/community or persuade them to change their behavior
 - Inform: Notify users of accidents (Waze)
 - Share: Notify friends of fitness goals (MyFitnessPal)
 - **Persuasion:** avoid speed traps (Waze)

References

- A Survey of Mobile Phone Sensing. Nicholas D. Lane, Emiliano Miluzzo, Hong Lu, Daniel Peebles, Tanzeem Choudhury, Andrew T. Campbell, In IEEE Communications Magazine, September 2010
- Mobile Phone Sensing Systems: A Survey, Khan, W.; Xiang, Y.; Aalsalem, M.; Arshad, Q.; , Communications Surveys & Tutorials, IEEE , vol.PP, no.99, pp.1-26