Ubiquitous and Mobile Computing CS 528: Accelerator-Based Transportation Mode Detection on Smartphones

Jialiang Bao

Computer Science Dept. Worcester Polytechnic Institute (WPI)

Main Idea and alternatives

Main Idea: Tracking transportation behavior of individuals

Detect whether the user is moving

How the user move (bus? Train? Or walk.)

Previous work use GPS:

- 1. High power consumption
- 2. Satellite problem
- 3. Not accurate

Accelerometer-based technique

- 1. Low power consumption
- 2. Measure human behavior directly
- 3. Contain high detailed information

What is Accelerometer? Challenge?

https://www.youtube.com/watch?v=i2U49usFo10

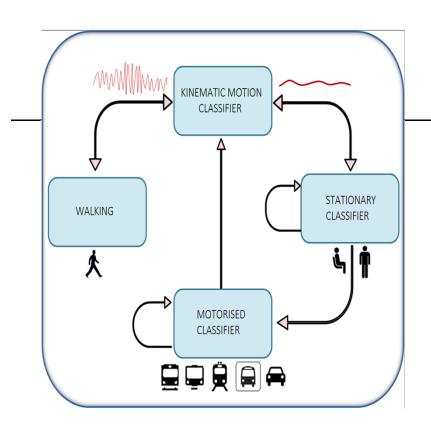
https://www.youtube.com/watch?v=Faxv0uFtuwl

Challenge: Extract irrelevant information about movement, e.g, gravity, user interaction and noise.

Preprocessing and Gravity Estimation

- 1. Low-pass filter to remove jitter.
- 2. Aggregate measurement using a sliding window with duration of 1.2 seconds
- 3. Project the sensor measurements to a global reference frame

Limitations:


- 1. Assume noise and observed accelerometer patterns uncorrelated
- 2. Orientation of sensors may suddenly change


To solve it, a new algorithm proposed

```
Algorithm 1 Gravity (Accelerometer window, TH_{var})
1: W_{mean} = mean(Accelerometer_{window})
2: W_{var} = var(Accelerometer_{window})
                                                                         Dynamically adjust the
 3: if ||W_{mean} - G_{est}|| \ge 2\text{m/s}^2 then
                                                                         variance threshold according
      TH_{var} = \epsilon
                               ▶ Reset variance threshold
                                                                         to movement pattern
5: end if
6: if W_{var} < 1.5 then
      if W_{var} < TH_{var} then
                                                           Allow the variance threshold
          G_{est} = W_{mean}
                                                           increase until a hard upper
         TH_{var} = (W_{var} + TH_{var})/2
                                                           threshold is reached
          VarIncrease = TH_{var} * \epsilon_{inc}
10:
11:
      else
12:
          TH_{var} = TH_{var} + VarIncrease
                                                                  Exceed threshold, use Mizell
13:
      end if
                                                                  technique to calculate Gravity
14: else
      G_{est} = MizellEstimate(5s)
16: end if
```

What is Segment?

Each activity has a duration of several minutes.

Feature Extraction

Domain **Features** Statistical Mean, STD, Variance, Median, Min, Max, Range, Interquartile range Frame based feature Kurtosis, Skewness, RMS Integral, Double integral, Auto-Correlation, Time Mean-Crossing Rate, FFT DC,1,2,3,4,5,6 Hz, Spectral Energy, Frequency Spectral Entropy, Spectrum peak position, Wavelet Entropy, Wavelet Magnitude Peak Volume (AuC), Intensity, Length, Peak-based features Kurtosis, Skewness Segment based features Segment Variance of peak features (10 features), Peak frequency (2 features), Stationary duration, Stationary frequency

Classification

Adaptive Boosting

Iteratively learn weak classifiers that focus on different subsets of the training data and to combine these classifiers into one strong classifier

Segment – based classification

- 1. Aggregate classification results of frame and peak features over an observed segment
- 2. Compute the classification result of the segment based features

Kinematic Motion classifier

Utilize frame-based accelerometer features extracted from each window to distinguish between pedestrian and other modalities

Stationary classifier

Use both peak features and frame based features to tell stationary or other modes

Motorized classifier

Used to distinguish between different motorized transportation modes.

Performance Evaluation

1. Accuracy of transportation mode detection

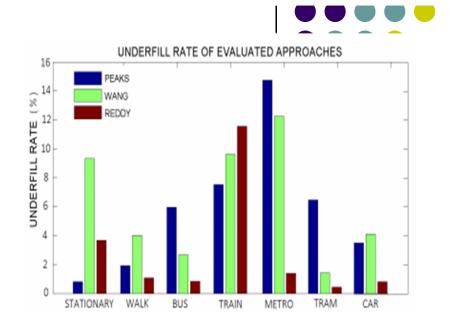
	Precision			Recall			
	Peaks	Wang	Reddy	Peaks	Wang	Reddy	
Stationary	96.1 (0.5)	57.3 (4.5)	81.6 (1.0)	70.0 (2.1)	59.5 (2.3)	70.6 (2.9)	
Walk	93.1 (0.1)	87.2 (0.2)	97.7 (0.1)	95.9 (0.1)	89.1 (0.2)	95.9 (0.1)	
Bus	78.2 (4.2)	71.1 (1.4)	67.3(1.6)	78.0 (3.3)	70.4 (1.4)	86.2 (6.4)	
Train	68.2 (5.0)	32.1(0.8)	7.7(4.4)	80.1 (4.0)	31.6(0.7)	55.4 (11.9)	
Metro	64.5 (5.9)	54.4 (0.6)	70.1 (8.8)	82.0 (2.6)	51.4 (0.9)	56.6 (3.5)	
Tram	84.0 (2.1)	58.1 (0.8)	82.8 (7.5)	86.1 (2.1)	58.2 (0.8)	64.5 (7.0)	
Mean	80.1 (2.9)	60.0 (1.4)	68.0 (3. 9)	82.1 (2.4)	60.2 (1.1)	71.6 (5.3)	

1. power consumption

Application	Energy		
Peaks TMD	85 mW		
Wang TMD	50 mW		
Reddy TMD	$240~\mathrm{mW}$		
Active call	680 mW		
Music player	50 mW		
Video recording	930 mW		
Video playing	660 mW		
Accelerometer	21 mW		
Magnetometer	48 mW		
Gyroscope	130 mW		
Microphone	105 mW		
GPS sampling	176 mW		
Background	140 mW		
Phone screen	470 mW		

TMode	Precision	Recall
Stationary	61.9 (-34.2)	64.0 (-6.0)
Walk	93.0 (-0.1)	93.0 (-2.9)
Bus	71.6 (-6.6)	71.5 (-6.5)
Train	25.1 (-43.1)	54.9 (-25.2)
Metro	60.1 (-4.4)	56.0 (-26.0)
Tram	69.6 (-14.4)	66.7 (-19.4)
Mean	63.6 (-16.5)	67.7 (-14.3)

Table 8: Detection accuracy for cross-user evaluation without the peak features.


Performance Evaluation

3 Generalization performance of classifiers

	Precision			Recall		
TMode	Peaks	Wang	Reddy	Peaks	Wang	Reddy
Stationary	96.0	51.5	80.9	72.9	52.6	78.0
Walk	92.4	84.1	97.7	97.3	85.4	91.1
Bus	85.2	59.1	63.1	86.7	77.3	78.7
Train	75.9	24.8	4.4	80.7	49.3	43.6
Metro	67.1	50.4	58.1	72.7	37.9	35.3
Tram	87.7	70.9	72.4	90.0	42.1	40.1
Car	90.1	79.3	89.9	96.7	80.1	95.4
Mean	84.9	60.0	66.7	85.3	60.7	66.0

Table 11: Generalization experiment of our detection system.

4 Latency of the detection (Not good)

Thank you!

