
Ubiquitous and Mobile Computing
CS 528:Visage: A Face Interpretation
Engine for Smartphone Applications

Amogh Raghunath
Computer Science Dept.

Worcester Polytechnic Institute (WPI)

Mateus Amarante Araujo
Robotics Engineering Dept.

Worcester Polytechnic Institute (WPI)

Outline

 Introduction

 Related Work

 Design

 Architecture

 Implementation

 Evaluation

 Visage Applications

 Conclusion

Introduction

 Smart phones are embedded with sensors

 Users are increasingly using applications

 Tweeting, Web surfing, texting

 Camera, capable of observing users as they interact

with different application

Introduction

 Visage: A robust, real‐time face interpretation engine

for smart phones

 Tracking user’s 3D head poses & facial expression

 Fuse data from front‐facing camera & motion sensor

Related Work

 Involves limited image processing

 SenseCam

 Recognizr

 MoVi

 Simple tracking of 2D face representations

 PEYE

 Visage: A robust, real‐time face interpretation
engine for smart phones

Design

Challenges

 User Mobility

 Movement of the phone cause low image quality

 Analyze exposure level of face region

 Limited Phone Resources

 Operate in real‐time

Architecture

Sensing Stage

Preprocessing Stage

Tracking Stage

Inference Stage

 Captures the video stream from the phone’s

front-facing camera

 Raw motion data from accelerometer and gyro

sensors on the phone.

Architecture
Sensing Stage

1. Phone posture component

2. Face detection with tilt compensation

3. Adaptive exposure component

Architecture
Preprocessing Stage

Phone posture component

 Identifies frames which contain user’s face and
monitors the phone posture

 Raw readings from accelerometer and gyroscope
and estimates of direction of gravity

 Calculates mean and variance on each direction

 Gravity direction – mean of accelerometer data

Architecture
Preprocessing Stage

Face detection with tilt compensation

 AdaBoost object detector with tilt correction

 Image is tilted by:

Architecture
Preprocessing Stage

Adaptive exposure component

 A clear face region is critical for tracking and
inference

 Visage uses the local lighting information within
the detected face region to correct the camera
hardware exposure level.

 Exposure level by computing the centroid of
Hface:

Architecture
Preprocessing Stage

Adaptive exposure component

Architecture
Preprocessing Stage

Architecture
Tracking Stage

 Feature Points Tracking Component

 Select feature points (e.g. eye corners and edges
of mouth): they are stable across frames

Methodology
Tracking Stage

 Feature Points Tracking Component

 Lucas-Kanade (LK) tracking algorithm

 CAMSHIFT

Methodology
Tracking Stage

 Pose Estimation Component

 Pose from Orthography and Scaling with ITerations (POSIT)
algorithm

 4 points in Image (2D) -> 3D pose estimation

 Human head simplified to a rigid cylinder

Methodology
Inference Stage
 Active Appearance Model

 Generate appearance features for classification

 Combine shape and texture models (more accurate)

 Expression Classification
 Fisher Linear Discriminant Analysis (Fisherface) to

reduce the dimension of the face feature vector

 Support Vector Machine (SVM) classifier with LibSVM

Implementation

 iPhone 4

 OpenCV Library

 AAM from VOSM (Vision Open Statistical Models)

Evaluation

 Benchmarks

Evaluation

 Tilted Face Detection

Standard AdaBoost face detector

vs

Visage’s Detector

Evaluation

Estimation

drifts

Reinitialize when variance is high

 Motion Based Reinicialization

Evaluation

 Head Pose Estimation

Evaluation

 Facial Expression Classification

 Validation with The Japanese Female Facial Expression
(JAFFE) Database

Confusion Matrix

Applications

 Streetview+

Applications

 Mood Profiler

Conclusion

 Face-aware applications

 Designed for resource limited mobile phones

 Online processing at a lower computational cost

multi-modality sensing

 Flexible and robust

References

 Yang, Xiaochao, et al. "Visage: A face interpretation engine for smartphone
applications." Mobile Computing, Applications, and Services. Springer Berlin
Heidelberg, 2012. 149-168.

 http://cseweb.ucsd.edu/~yfreund/papers/IntroToBoosting.pdf (AdaBoost)

 http://docs.opencv.org/master/d7/d8b/tutorial_py_lucas_kanade.html#gsc.tab=0 (LK
tracking algorithm)

 http://docs.opencv.org/master/db/df8/tutorial_py_meanshift.html#gsc.tab=0 (CAMSHIFT)

 http://makematics.com/research/posit/ (POSIT algorithm)

 http://www.visionopen.com/downloads/open-source-software/vosm/# (VOSM projects)

 http://www2.imm.dtu.dk/~aam/main/ (AAM algorithm)

 http://www.ics.uci.edu/~welling/classnotes/papers_class/Fisher-LDA.pdf (Fisher LDA)

 http://docs.opencv.org/2.4/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html
(SVM algorithm)

 http://www.csie.ntu.edu.tw/~cjlin/libsvm/ (LibSVM)

 http://www.kasrl.org/jaffe.html (JAAFE Database)

http://cseweb.ucsd.edu/~yfreund/papers/IntroToBoosting.pdf
http://docs.opencv.org/master/d7/d8b/tutorial_py_lucas_kanade.html#gsc.tab=0
http://docs.opencv.org/master/db/df8/tutorial_py_meanshift.html#gsc.tab=0
http://makematics.com/research/posit/
http://www.visionopen.com/downloads/open-source-software/vosm/
http://www2.imm.dtu.dk/~aam/main/
http://www.ics.uci.edu/~welling/classnotes/papers_class/Fisher-LDA.pdf
http://docs.opencv.org/2.4/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.kasrl.org/jaffe.html

Thank you!

