Ubiquitous and Mobile Computing CS 528:Visage: A Face Interpretation Engine for Smartphone Applications

Amogh Raghunath

Computer Science Dept.

Worcester Polytechnic Institute (WPI)

Mateus Amarante Araujo

Robotics Engineering Dept. Worcester Polytechnic Institute (WPI)

Outline

- Introduction
- Related Work
- Design
- Architecture
- Implementation
- Evaluation
- Visage Applications
- Conclusion

Introduction

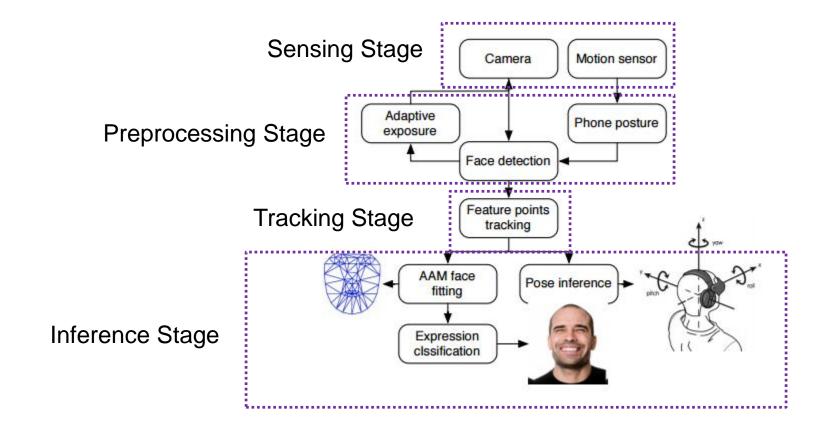
- Smart phones are embedded with sensors
- Users are increasingly using applications
 - Tweeting, Web surfing, texting
- Camera, capable of observing users as they interact with different application

Introduction

- Visage: A robust, real-time face interpretation engine for smart phones
 - Tracking user's 3D head poses & facial expression
 - Fuse data from front-facing camera & motion sensor

Related Work

- Involves limited image processing
 - SenseCam
 - Recognizr
 - MoVi
- Simple tracking of 2D face representations
 - PEYE
- Visage: A robust, real-time face interpretation engine for smart phones


Design

Challenges

- User Mobility
 - Movement of the phone cause low image quality
 - Analyze exposure level of face region
- Limited Phone Resources
 - Operate in real-time

Architecture Sensing Stage

- Captures the video stream from the phone's front-facing camera
- Raw motion data from accelerometer and gyro sensors on the phone.

Architecture Preprocessing Stage

- 1. Phone posture component
- 2. Face detection with tilt compensation
- 3. Adaptive exposure component

Preprocessing Stage

Phone posture component

- Identifies frames which contain user's face and monitors the phone posture
- Raw readings from accelerometer and gyroscope and estimates of direction of gravity
- Calculates mean and variance on each direction
- Gravity direction mean of accelerometer data

Preprocessing Stage

Face detection with tilt compensation

AdaBoost object detector with tilt correction

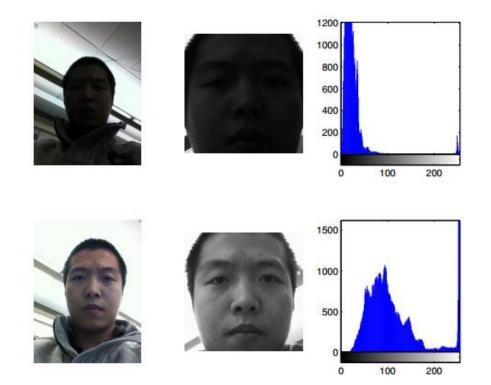
$$\theta_g = \frac{180}{\pi} \arctan \frac{a_x}{a_y}$$

• Image is tilted by:

$$I_r = \begin{bmatrix} \cos\theta_g & -\sin\theta_g \\ \sin\theta_g & \cos\theta_g \end{bmatrix} I_i$$

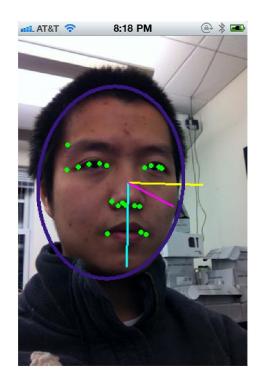
Preprocessing Stage

Adaptive exposure component


- A clear face region is critical for tracking and inference
- Visage uses the local lighting information within the detected face region to correct the camera hardware exposure level.
- Exposure level by computing the centroid of Hface:

$$C_{H_{face}} = \frac{\sum_{i=0}^{255} i H_{face}(i)}{\sum_{i=0}^{255} i}$$

Preprocessing Stage


Adaptive exposure component

Tracking Stage

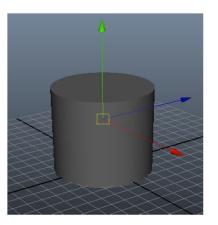
- Feature Points Tracking Component
 - Select feature points (e.g. eye corners and edges of mouth): they are stable across frames

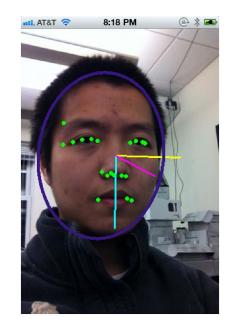
Methodology

Tracking Stage

- Feature Points Tracking Component
 - Lucas-Kanade (LK) tracking algorithm

CAMSHIFT

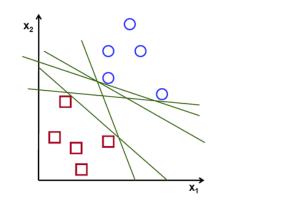


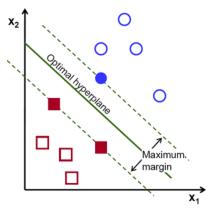


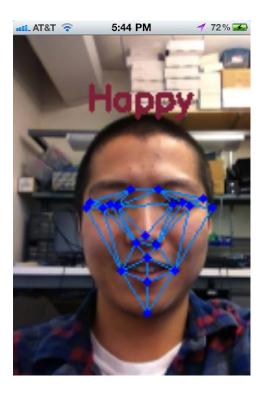
Methodology

Tracking Stage

- Pose Estimation Component
 - Pose from Orthography and Scaling with ITerations (POSIT) algorithm
 - 4 points in Image (2D) -> 3D pose estimation
 - Human head simplified to a rigid cylinder






Methodology Inference Stage

- Active Appearance Model
 - Generate appearance features for classification
 - Combine shape and texture models (more accurate)
- Expression Classification
 - Fisher Linear Discriminant Analysis (Fisherface) to reduce the dimension of the face feature vector
 - Support Vector Machine (SVM) classifier with LibSVM

Implementation

- iPhone 4
- OpenCV Library
- AAM from VOSM (Vision Open Statistical Models)

Resolution	Time (ms)		
640×480	4090		
480×360	2123		
320×240	868		
192×144	298		
160×120	203		
96×72	68		
80×60	53		

• Benchmarks

Tasks	Avg. CPU usage	Avg. memory usage
GUI only	< 1%	3.18MB
Pose estimation	58%	6.07MB
Expression inference	29%	$4.57 \mathrm{MB}$
Pose estimation		
& expression inference	68%	$6.28 \mathrm{MB}$

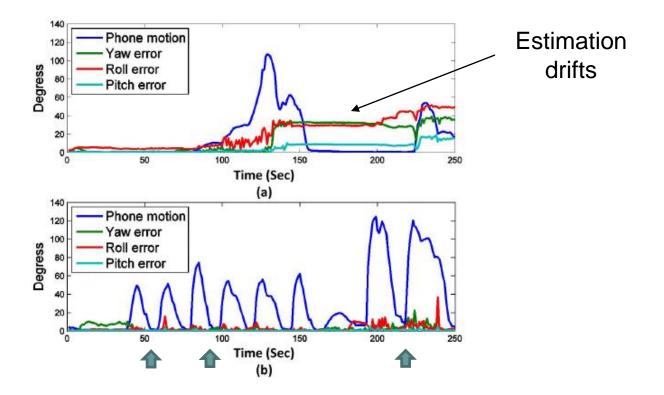
Table 2. CPU and memory usage under various task benchmarks

Component	Average processing time(ms		
Face detection	53		
Feature points tracking	32		
AAM fitting	92		
Facial expression classification	3		

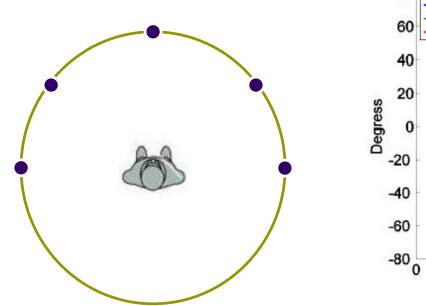
 Table 3. Processing time benchmarks

• Tilted Face Detection

Standard AdaBoost face detector


VS

Visage's Detector


Motion Based Reinicialization

Reinitialize when variance is high

• Head Pose Estimation

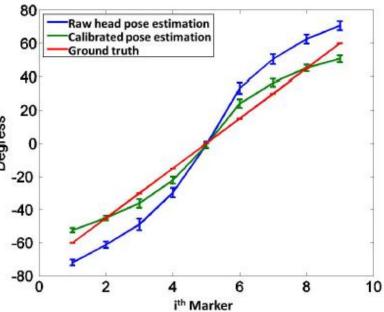
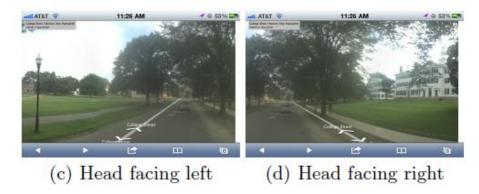


Fig. 8. Head pose estimation error

- Facial Expression Classification
 - Validation with The Japanese Female Facial Expression (JAFFE) Database

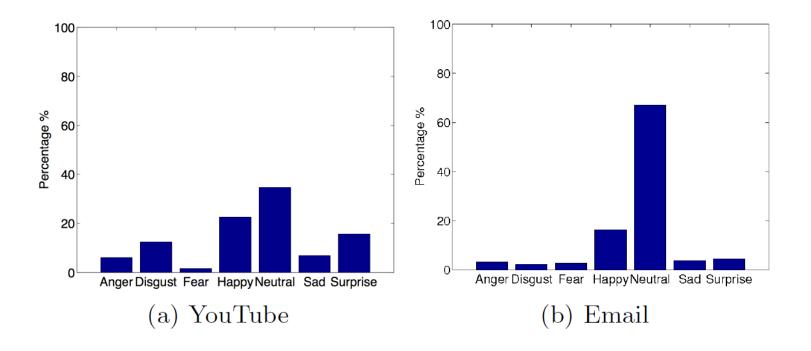
Expressions	-	<u> </u>					-
Accuracy(%)	82.16	79.68	83.57	90.30	89.93	73.24	87.52

Expression	s Anger	Disgust	Fear	Happy	Neutral	Sadness	Surprise
Anger	93.33	6.67	0	0	0	0	0
Disgust	6.90	75.86	17.24	0	0	0	0
Fear	0	7.41	92.54	0	0	0	3.23
Happy	0	0	0	87.10	6.45	3.23	0
Neutral	0	0	0	0	90.00	10.00	0
Sadness	0	6.45	9.68	3.23	9.68	70.97	0
Surprise	0	0	3.33	3.33	0	0	93.33


Confusion Matrix

Applications

• Streetview+


(a) Streetview+ on the go (b) Head facing front

Applications

Mood Profiler

Conclusion

Face-aware applications

- Designed for resource limited mobile phones
- Online processing at a lower computational cost multi-modality sensing
- Flexible and robust

References

- Yang, Xiaochao, et al. "Visage: A face interpretation engine for smartphone applications." *Mobile Computing, Applications, and Services*. Springer Berlin Heidelberg, 2012. 149-168.
- <u>http://cseweb.ucsd.edu/~yfreund/papers/IntroToBoosting.pdf</u> (AdaBoost)
- <u>http://docs.opencv.org/master/d7/d8b/tutorial_py_lucas_kanade.html#gsc.tab=0</u> (LK tracking algorithm)
- <u>http://docs.opencv.org/master/db/df8/tutorial_py_meanshift.html#gsc.tab=0</u> (CAMSHIFT)
- <u>http://makematics.com/research/posit/</u> (POSIT algorithm)
- <u>http://www.visionopen.com/downloads/open-source-software/vosm/#</u> (VOSM projects)
- <u>http://www2.imm.dtu.dk/~aam/main/</u> (AAM algorithm)
- <u>http://www.ics.uci.edu/~welling/classnotes/papers_class/Fisher-LDA.pdf</u> (Fisher LDA)
- <u>http://docs.opencv.org/2.4/doc/tutorials/ml/introduction to svm/introduction to svm.html</u> (SVM algorithm)
- <u>http://www.csie.ntu.edu.tw/~cjlin/libsvm/</u> (LibSVM)
- <u>http://www.kasrl.org/jaffe.html</u> (JAAFE Database)

Thank you!