# Computer Graphics CS 543 - Lecture 2 (Part 3) Fractals 

## Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

## What are Fractals?

- Mathematical expressions
- Approach infinity in organized way
- Utilizes recursion on computers
- Popularized by Benoit Mandelbrot (Yale university)
- Dimensional:
- Line is one-dimensional
- Plane is two-dimensional
- Defined in terms of self-similarity


## Fractals: Self-similarity

- Level of detail remains the same as we zoom in
- Example: surface roughness or profile same as we zoom in
- Types:
- Exactly self-similar
- Statistically self-similar


## Examples of Fractals

- Clouds
- Grass
- Fire
- Modeling mountains (terrain)
- Coastline
- Branches of a tree
- Surface of a sponge
- Cracks in the pavement
- Designing antennae (www.fractenna.com)


## Example: Mandelbrot Set



## Example: Mandelbrot Set



## Example: Fractal Terrain



Courtesy: Mountain 3D
Fractal Terrain software

## Example: Fractal Terrain



## Example: Fractal Art



Courtesy: Internet
Fractal Art Contest

## Application: Fractal Art



Courtesy: Internet
Fractal Art Contest

## Recall: Sierpinski Gasket Program

- Popular fractal



## Koch Curves

- Discovered in 1904 by Helge von Koch
- Start with straight line of length 1
- Recursively:
- Divide line into 3 equal parts
- Replace middle section with triangular bump, sides of length $1 / 3$
- New length $=4 / 3$



## Koch Curves


$S_{3}, S_{4}, S_{5}$


## Koch Snowflakes

- Can form Koch snowflake by joining three Koch curves
- Perimeter of snowflake grows exponentially:

$$
P_{i}=3(4 / 3)
$$

where $P_{i}$ is perimeter of the ith snowflake iteration

- However, area grows slowly and $\mathrm{S}_{\infty}=8 / 5$ !!
- Self-similar:
- zoom in on any portion
- If $n$ is large enough, shape still same
- On computer, smallest line segment > pixel spacing


## Koch Snowflakes

Pseudocode, to draw $K_{n}$ :
If ( n equals 0 ) draw straight line Else\{

Draw $K_{n-1}$
Turn left $60^{\circ}$
Draw $K_{n-1}$
Turn right $120^{\circ}$
Draw $K_{n-1}$


Turn left $60^{\circ}$
Draw $K_{n-1}$

## L-Systems: Lindenmayer Systems

- Express complex curves as simple set of string-production rules
- Example rules:
- ' $F$ ': go forward a distance 1 in current direction
- ' + ': turn right through angle $\boldsymbol{A}$ degrees
- '-': turn left through angle $\boldsymbol{A}$ degrees
- Using these rules, can express koch curve as: "F-F++F-F"
- Angle $\boldsymbol{A}=60$ degrees



## L-Systems: Koch Curves

- Rule for Koch curves is F-> F-F++F-F
- Means each iteration replaces every ' $F$ ' occurrence with " $F-F++F-F$ "
- So, if initial string (called the atom) is ' $F$ ', then
- $\mathrm{S}_{1}=" \mathrm{~F}-\mathrm{F}++\mathrm{F}-\mathrm{F}$ "
- $S_{2}=$ "F-F++F-F-F-F++F-F++ F-F++F-F-F-F++F-F"
- $\mathrm{S}_{3}=\ldots$..
- Gets very large quickly



## Iterated Function Systems (IFS)

- Recursively call a function
- Does result converge to an image? What image?
- IFS's converge to an image
- Examples:
- The Fern
- The Mandelbrot set


## The Fern



## Mandelbrot Set

- Based on iteration theory
- Function of interest:

$$
f(z)=(s)^{2}+c
$$

- Sequence of values (or orbit):

$$
\begin{aligned}
& d_{1}=(s)^{2}+c \\
& d_{2}=\left((s)^{2}+c\right)^{2}+c \\
& d_{3}=\left(\left((s)^{2}+c\right)^{2}+c\right)^{2}+c \\
& d_{4}=\left(\left(\left((s)^{2}+c\right)^{2}+c\right)^{2}+c\right)^{2}+c
\end{aligned}
$$

## Mandelbrot Set

- Orbit depends on $s$ and $c$
- Basic question,:
- For given $s$ and $c$,
- does function stay finite? (within Mandelbrot set)
- explode to infinity? (outside Mandelbrot set)
- Definition: if $|d|<1$, orbit is finite else inifinite
- Examples orbits:
- $s=0, c=-1$, orbit $=0,-1,0,-1,0,-1,0,-1, \ldots$. .finite
- $s=0, c=1$, orbit $=0,1,2,5,26,677 \ldots \ldots$. explodes


## Mandelbrot Set

- Mandelbrot set: use complex numbers for $c$ and $s$
- Always set $s=0$
- Choose c as a complex number
- For example:
- $s=0, c=0.2+0.5 \mathrm{i}$
- Hence, orbit:
- $0, c, c^{2}+c,\left(c^{2}+c\right)^{2}+c, \ldots . . . .$.
- Definition: Mandelbrot set includes all finite orbit $c$


## Mandelbrot Set

- Some complex number math:

$$
i * i=-1
$$

- Example:

$$
2 i * 3 i=-6
$$



- Modulus of a complex number, $\mathrm{z}=\mathrm{ai}+\mathrm{b}$ :

$$
|z|=\sqrt{a^{2}+b^{2}}
$$

- Squaring a complex number:

$$
(x+y i)^{2}=\left(x^{2}-y^{2}\right)+(2 x y) i
$$

## Mandelbrot Set

- Calculate first 3 terms
- with $s=2, c=-1$
- with $s=0, c=-2+i$


## Mandelbrot Set

- Calculate first 3 terms
- with $s=2, c=-1$, terms are

$$
\begin{aligned}
& 2^{2}-1=3 \\
& 3^{2}-1=8 \\
& 8^{2}-1=63
\end{aligned}
$$

- with $s=0, c=-2+i$

$$
\begin{aligned}
& 0+(-2+i)=-2+i \\
& (-2+i)^{2}+(-2+i)=1-3 i \\
& (1-3 i)^{2}+(-2+i)=-10-5 i
\end{aligned}
$$

## Mandelbrot Set

- Fixed points: Some complex numbers converge to certain values after $x$ iterations.
- Example:
- $s=0, c=-0.2+0.5 i$ converges to $-0.249227+$ 0.333677 i after 80 iterations
- Experiment: square -0.249227 + 0.333677i and add $-0.2+0.5 i$
- Mandelbrot set depends on the fact the convergence of certain complex numbers


## Mandelbrot Set

- Routine to draw Mandelbrot set:
- Cannot iterate forever: our program will hang!
- Instead iterate 100 times
- Math theorem:
- if number hasn't exceeded 2 after 100 iterations, never will!
- Routine returns:
- Number of times iterated before modulus exceeds 2 , or
- 100, if modulus doesn't exceed 2 after 100 iterations
- See dwell( ) function in Hill (figure A4.5, pg. 755)


## Mandelbrot dwell( ) function

int dwell (double cx, double cy)
\{ // return true dwell or Num, whichever is smaller \#define Num 100 // increase this for better pics
double tmp, $d x=c x, d y=c y, f s q=c x * c x+c y * c y ;$ for (int count $=0$;count <= Num \&\& fsq <= 4; count++) \{

```
tmp = dx; // save old real part
dx = dx*dx - dy*dy + cx; // new real part
dy = 2.0 * tmp * dy + cy; // new imag. Part
fsq = dx*dx + dy*dy;
```

    \}
    return count; // number of iterations used
    \}

$$
(x+y i)^{2}=\left(x^{2}-y^{2}\right)+(2 x y) i
$$

## Mandelbrot Set

- Map real part to x-axis
- Map imaginary part to $y$-axis
- Decide range of complex numbers to investigate. E.g:
- $X$ in range [-2.25: 0.75]
- $Y$ in range [-1.5: 1.5]
- Choose your viewport. E.g:
- Viewport $=[$ V.L, V.R, V.B, V.T] $=[60,380,80,240]$


## Mandelbrot Set



## Mandelbrot Set

- So, for each pixel:
- Compute corresponding point in world
- Call your dwell( ) function
- Assign color <Red,Green,Blue> based on dwell( ) return value
- Choice of color determines how pretty
- Color assignment:
- Basic: In set (i.e. dwell( ) = 100), color = black, else color = white
- Discrete: Ranges of return values map to same color
- E.g 0-20 iterations = color 1
- 20-40 iterations = color 2, etc.
- Continuous: Use a function


## Mandelbrot Set

Use continuous function


## FREE SOFTWARE

- Free fractal generating software
- Fractint
- FracZoom
- Astro Fractals
- Fractal Studio
- 3DFract


## References

- Angel and Shreiner, Chapter 9
- Hill and Kelley, appendix 4

