Computer Graphics CS 543 – Lecture 2 (Part 3) Fractals

Prof Emmanuel Agu

Computer Science Dept. Worcester Polytechnic Institute (WPI)

What are Fractals?

- Mathematical expressions
- Approach infinity in organized way
- Utilizes recursion on computers
- Popularized by Benoit Mandelbrot (Yale university)
- Dimensional:
 - Line is one-dimensional
 - Plane is two-dimensional
- Defined in terms of self-similarity

Fractals: Self-similarity

- Level of detail remains the same as we zoom in
- Example: surface roughness or profile same as we zoom in
- Types:
 - Exactly self-similar
 - Statistically self-similar

Examples of Fractals

- Clouds
- Grass
- Fire
- Modeling mountains (terrain)
- Coastline
- Branches of a tree
- Surface of a sponge
- Cracks in the pavement
- Designing antennae (www.fractenna.com)

Example: Mandelbrot Set

Example: Mandelbrot Set

Example: Fractal Terrain

Courtesy: Mountain 3D Fractal Terrain software

Example: Fractal Terrain

Example: Fractal Art

Courtesy: Internet Fractal Art Contest

Application: Fractal Art

Courtesy: Internet Fractal Art Contest

Recall: Sierpinski Gasket Program

• Popular fractal

Koch Curves

- Discovered in 1904 by Helge von Koch
- Start with straight line of length 1
- Recursively:
 - Divide line into 3 equal parts
 - Replace middle section with triangular bump, sides of length 1/3
 - New length = 4/3

Koch Curves

Koch Snowflakes

- Can form Koch snowflake by joining three Koch curves
- Perimeter of snowflake grows exponentially:

where P_i is perimeter of the ith snowflake iteration

- However, area grows slowly and $S_{\infty} = 8/5!!$
- Self-similar:
 - zoom in on any portion
 - If *n* is large enough, shape still same
 - On computer, smallest line segment > pixel spacing

Koch Snowflakes

Pseudocode, to draw *K*_n:

If (n equals 0) draw straight line Else{

> Draw K_{n-1} Turn left 60° Draw K_{n-1} Turn right 120° Draw K_{n-1} Turn left 60° Draw K_{n-1}

}

L-Systems: Lindenmayer Systems

- Express complex curves as simple set of **string-production** rules
- Example rules:
 - 'F': go forward a distance 1 in current direction
 - '+': turn right through angle **A** degrees
 - '-': turn left through angle **A** degrees
- Using these rules, can express koch curve as: "F-F++F-F"
- Angle **A** = 60 degrees

L-Systems: Koch Curves

- Rule for Koch curves is F -> F-F++F-F
- Means each iteration replaces every 'F' occurrence with "F-F++F-F"
- So, if initial string (called the **atom**) is 'F', then
- $S_1 = "F-F++F-F"$
- S₂ = "F-F++F-F-F-F++F-F++F-F++F-F"
- S₃ =
- Gets very large quickly

Iterated Function Systems (IFS)

- Recursively call a function
- Does result converge to an image? What image?
- IFS's converge to an image
- Examples:
 - The Fern
 - The Mandelbrot set

The Fern

- Based on iteration theory
- Function of interest:

$$f(z) = (s)^2 + c$$

• Sequence of values (or orbit):

$$d_{1} = (s)^{2} + c$$

$$d_{2} = ((s)^{2} + c)^{2} + c$$

$$d_{3} = (((s)^{2} + c)^{2} + c)^{2} + c$$

$$d_{4} = ((((s)^{2} + c)^{2} + c)^{2} + c)^{2} + c)^{2} + c$$

- Orbit depends on *s* and *c*
- Basic question,:
 - For given *s* and *c*,
 - does function stay finite? (within Mandelbrot set)
 - explode to infinity? (outside Mandelbrot set)
- Definition: if |d| < 1, orbit is finite else inifinite
- Examples orbits:
 - *s* = 0, *c* = -1, orbit = 0,-1,0,-1,0,-1,0,-1,....*finite*
 - *s* = 0, *c* = 1, orbit = 0,1,2,5,26,677..... *explodes*

- Mandelbrot set: use complex numbers for *c* and *s*
- Always set *s* = 0
- Choose c as a complex number
- For example:

• Hence, orbit:

• 0, c,
$$c^2 + c$$
, $(c^2 + c)^2 + c$,

• Definition: Mandelbrot set includes all finite orbit *c*

• Some complex number math:

$$i * i = -1$$

• Example:

$$2i*3i = -6$$

• Modulus of a complex number, z = ai + b:

$$\left|z\right| = \sqrt{a^2 + b^2}$$

• Squaring a complex number:

$$(x + yi)^{2} = (x^{2} - y^{2}) + (2xy)i$$

- Calculate first 3 terms
 - with s=2, c=-1
 - with s = 0, c = -2+i

- Calculate first 3 terms
 - with s=2, c=-1, terms are

$$2^{2} - 1 = 3$$

 $3^{2} - 1 = 8$
 $8^{2} - 1 = 63$

• with s = 0, c = -2+i

$$0 + (-2 + i) = -2 + i$$

$$(-2 + i)^{2} + (-2 + i) = 1 - 3i$$

$$(1 - 3i)^{2} + (-2 + i) = -10 - 5i$$

• Fixed points: Some complex numbers converge to certain values after *x* iterations.

• Example:

- s = 0, c = -0.2 + 0.5i converges to -0.249227 +
 0.333677i after 80 iterations
- Experiment: square -0.249227 + 0.333677i and add
 -0.2 + 0.5i
- Mandelbrot set depends on the fact the convergence of certain complex numbers

- Routine to draw Mandelbrot set:
- Cannot iterate forever: our program will hang!
- Instead iterate 100 times
- Math theorem:
 - if number hasn't exceeded 2 after 100 iterations, never will!
- Routine returns:
 - Number of times iterated before modulus exceeds 2, or
 - 100, if modulus doesn't exceed 2 after 100 iterations
 - See dwell() function in Hill (figure A4.5, pg. 755)

Mandelbrot dwell() function

```
int dwell(double cx, double cy)
{ // return true dwell or Num, whichever is smaller
  #define Num 100 // increase this for better pics
  double tmp, dx = cx, dy = cy, fsq = cx*cx + cy*cy;
  for(int count = 0; count <= Num && fsq <= 4; count++)
  {
      tmp = dx; // save old real part
      dx = dx*dx - dy*dy + cx; // new real part
      dy = 2.0 * tmp * dy + cy; // new imag. Part
      fsq = dx*dx + dy*dy;
  }
  return count; // number of iterations used
}
```

$$(x + yi)^{2} = (x^{2} - y^{2}) + (2xy)i$$

- Map real part to x-axis
- Map imaginary part to y-axis
- Decide range of complex numbers to investigate. E.g:
 - X in range [-2.25: 0.75]
 - Y in range [-1.5: 1.5]
- Choose your viewport. E.g:
 - Viewport = [V.L, V.R, V.B, V.T]= [60,380,80,240]

P.

- So, for each pixel:
 - Compute corresponding point in world
 - Call your dwell() function
 - Assign color <Red,Green,Blue> based on dwell() return value
- Choice of color determines how pretty
- Color assignment:
 - Basic: In set (i.e. dwell() = 100), color = black, else color = white
 - Discrete: Ranges of return values map to same color
 - E.g 0 20 iterations = color 1
 - 20 40 iterations = color 2, etc.
 - Continuous: Use a function

Use continuous function

FREE SOFTWARE

- Free fractal generating software
 - Fractint
 - FracZoom
 - Astro Fractals
 - Fractal Studio
 - 3DFract

References

- Angel and Shreiner, Chapter 9
- Hill and Kelley, appendix 4