Computer Graphics
CS 543 — Lecture 3 (Part 1)
Shader Programming

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)




Objectives

e Write simple Shaders
Vertex shader

Fragment shaders

e Better overview of programming shaders with
GLSL

2
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012



Vertex Shader Applications

e Moving vertices
e Morphing
e Wave motion
e Fractals
e Lighting
e More realistic models
e Cartoon shaders

3 E. Angel and D. Shreiner: Interactive

Computer Graphics 6E © Addison-
\Alaclavy 2019




Fragment Shader Applications

Per fragment lighting calculations

per vertex lighting per fragment lighting

4 E. Angel and D. Shreiner: Interactive

Computer Graphics 6E © Addison-
\\Alaclavy 2019



Fragment Shader Applications

Texture mapping

smooth shading environment bump mapping
mapping
> E. Angel and D. Shreiner: Interactive

Computer Graphics 6E © Addison-
\\Alaclavy 2019



Writing Shaders

e First programmable shaders in assembler

e OpenGL ARB extensions added for vertex and
fragment shaders

e Cg (C for graphics) C-like language for
programming shaders (by Nvidia)
Works with both OpenGL and DirectX
Interface to OpenGL complex

e OpenGL Shading Language (GLSL)

6 E. Angel and D. Shreiner: Interactive

Computer Graphics 6E © Addison-
\Alaclavy 2019




3

GLSL
e OpenGL Shading Language
e Part of OpenGL 2.0 and up
e High level C-like language
e New data types

Matrices

Vectors

Samplers

e As of OpenGL 3.1, application must provide
shaders

7 E. Angel and D. Shreiner: Interactive

Computer Graphics 6E © Addison-
\Alaclavy 2019



Simple Vertex Shader

/ input from application

In vec4 vPosition; " must link to variable in application

void main(void)

{

gl _Position = vPosition;

N

built in variable

8 E. Angel and D. Shreiner: Interactive

Computer Graphics 6E © Addison-
\Alaclavy 2019



Execution Model

Vertex data
Shader Program

GPU
Application Vertex Primitive
Program Shader Assembly
glDrawArrays Vertex
9 E. Angel and D. Shreiner: Interactive

Computer Graphics 6E © Addison-
\Alaclavy 2019



Simple Fragment Program

void main(void)
{
gl FragColor = vec4(1.0, 0.0, 0.0, 1.0);

J

10 E. Angel and D. Shreiner: Interactive

Computer Graphics 6E © Addison-
\Alaclavy 2019




Execution Model

Application
Shader Program
Fragment
Rasterizer Shader Frame Buffer
Fragment Fragment
11 E. Angel and D. Shreiner: Interactcl)ve

Computer Graphics 6E © Addison-
\Alaclavy 2019



Data Types

e Ctypes:int, float, bool

e Vectors:

float vec2, vec3, vec4

Also int (ivec) and boolean (bvec)
e Matrices: mat2, mat3, mat4

Stored by columns

Standard referencing m[row][column]
e C++ style constructors

vec3 a =vec3(1.0, 2.0, 3.0)

12 E. Angel and D. Shreiner: Interactive

Computer Graphics 6E © Addison-
\Alaclavy 2019




Pointers

e No pointers in GLSL

e Can use C structs that can be copied back from
functions

e Matrices and vectors

are basic types
can be passed in and out from GLSL functions,

e E.8.
mat3 func(mat3 a)

13 E. Angel and D. Shreiner: Interactive

Computer Graphics 6E © Addison-
\Alaclavy 2019



Qualifiers

e GLSL has many C/C++ qualifiers such as const
e Supports additional ones

e Variables can change
Once per primitive
Once per vertex
Once per fragment
At any time in the application

e Vertex attributes are interpolated by the rasterizer
into fragment attributes

14 E. Angel and D. Shreiner: Interactive

Computer Graphics 6E © Addison-
\Alaclavy 2019



Attribute Qualifier

e Attribute-qualified variables can change at most once
per vertex

e There are a few built in variables such as gl _Position
but most have been deprecated

e User defined (in application program)
Use in qualifier to get to shader
in float temperature
In vec3 velocity

15 E. Angel and D. Shreiner: Interactive

Computer Graphics 6E © Addison-
\Alaclavy 2019



Uniform Qualified

e Variables that are constant for an entire primitive

e Can be changed in application and sent to
shaders

e Cannot be changed in shader

e Used to pass information to shader such as the
bounding box of a primitive

16 E. Angel and D. Shreiner: Interactive

Computer Graphics 6E © Addison-
\Alaclavy 2019



Varying Qualified

e Variables passed from vertex shader to fragment
shader

e Automatically interpolated by the rasterizer

e Old style used the varying qualifier
varying vec4 color;

e Now use out in vertex shader and in in the
fragment shader
out vec4 color;

17 E. Angel and D. Shreiner: Interactive

Computer Graphics 6E © Addison-
\Alaclavy 2019



Example: Vertex Shader

const vec4 red = vec4(1.0, 0.0, 0.0, 1.0);
out vec3 color_out;
void main(void)
{
gl _Position = vPosition;
color_out =red;

J

18 E. Angel and D. Shreiner: Interactive

Computer Graphics 6E © Addison-
\Alaclavy 2019




Required Fragment Shader

in vec3 color_out;

In older versions of GLSL
Gl _FragColor was built in variable
No need to declare it!

void main(void)

{

gl _FragColor = color_out;
}
// in latest version use form
// out vec4 fragcolor;
// fragcolor = color_out;

19 E. Angel and D. Shreiner: Interactive

Computer Graphics 6E © Addison-
\Alaclavy 2019



Passing values

e call by value-return
e Variables are copied in
e Returned values are copied back
e Two possibilities
in
out
inout (deprecated)

20 E. Angel and D. Shreiner: Interactive

Computer Graphics 6E © Addison-
\Alaclavy 2019




Operators and Functions

e Standard C functions
Trigonometric
Arithmetic
Normalize, reflect, length

e Overloading of vector and matrix types
mat4 a;
vecd b, c, d;
c = b*a; // a column vector stored as a 1d array
d = a*b; // a row vector stored as a 1d array

21 E. Angel and D. Shreiner: Interactive

Computer Graphics 6E © Addison-
\Alaclavy 2019



Swizzling and Selection

e Can refer to array elements by element using (]
or selection (.) operator with

X,V, 2z, W

r,g,b,a

s, t,p, q

vecd a;

al2], a.b, a.z, a.parethesame

e Swizzling operator lets us manipulate

components
a.yz = vec2(1.0, 2.0);
22 E. Angel and D. Shreiner: Interactive

Computer Graphics 6E © Addison-
\Alaclavy 2019



References

e Angel and Shreiner




