Computer Graphics
CS 543 — Lecture 4 (Part 1)
Building 3D Models (Part 1)

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Objectives

e Introduce simple data structures for building
polygonal models

Vertex lists
Edge lists

e Deprecated OpenGL vertex arrays
e Drawing 3D objects

3D Applications o

e 2D: points have (x,y) coordinates
e 3D: points have (x,y,z) coordinates
e In OpenGL, 2D graphics are special case of 3D graphics

Setting up 3D Applications

e Programming 3D, not many changes from 2D
Load representation of 3D object into data structure
Note: Vertices stored as 3D points (x, v, z)
Use vec3, gluniform3fT instead of vec2

Draw 3D object

Hidden surface removal: Correctly determine order
in which primitives (triangles, faces) are rendered

(Blocked faces NOT drawn)

3D Coordinate Systems

e Tip: sweep fingers x-y: thumb is z

e

Right hand coordinate system

+z

v
X

Left hand coordinate system
eNot used in this class and
eNot in OpenGL

Generating 3D Models: GLUT Models :

e One way of generating 3D shapes is by using GLUT 3D models (Restrictive?)

e Note: Simply make GLUT 3D calls in application program (Not shaders)

e Two main categories of GLUT models:

e Wireframe Models
e Solid Models

Solid models

5| FreeGLUT Shapes

Wireframe models

3D Modeling: GLUT Models

e Basic Shapes
e Cone: glutWireCone(), glutSolidCone()

e Sphere: glutWireSphere(), glutSolidSphere()
e Cube: glutWireCube(), glutSolidCube()

e More advanced shapes:

Newell Teapot: (symbolic)

Dodecahedron, Torus

Sphere

(5] FreeGLUT Shapes

GLUT Models: glutwireTeapot()

e Famous Utah Teapot has become an unofficial computer
graphics mascot

glutWireTeapot(0.5) - Create teapot of size 0.5, center positioned at (0,0,0)

Also glutSolidTeapot()

You need to apply transformations to position, scale and rotate it

3D Modeling: GLUT Models

e Glut functions under the hood
e generate sequence of points that define a shape
e centered at 0.0

e Example: glutWireCone generates sequence of vertices, and faces defining cone
and connectivity

e Generated vertices and faces passed to OpenGL for rendering

glutWireCone generates OpenGL program
sequence of vertices, and - N] receives vertices, [—
faces defining cone | Faces and renders

them

Polygonal Meshes

e Modeling with GLUT shapes (cube, sphere, etc) too restrictive
e Difficult to approach realism
e Other (preferred) way is using polygonal meshes:
Collection of polygons, or faces, that form “skin” of object
More flexible
Represents complex surfaces better
Examples:
Human face
Animal structures
Furniture, etc

Polygonal Mesh Example

#= Mesh - Copie de nefertiti. wrl

Fie EQ OpenGL Mesh View Window Help
D|=|@| [|B[e &2

Smoothed
Out with _~
Shading
(later)

W nefertiti wil

=[O x|

EF. Copie de nefertiti. wrl

Ready

NUM

-\

Mesh
(wireframe)

Polygonal Meshes :

e Meshes now standard in graphics
e OpenGL

e Good at drawing polygons, triangles
e Mesh = sequence of polygons forming thin skin around object

e Simple meshes exact. (e.g barn)
e Complex meshes approximate (e.g. human face)
e Use shading technique later to smoothen

a) BOX b) STRUCT\ 72>

Meshes at Different Resolutions

Original: 424,000 60,000 triangles 1000 triangles
triangles (14%). (0.2%)

(courtesy of Michael Garland and Data courtesy of Iris Development.)

Representing a Mesh

e Consider a mesh

Vo

e There are 8 vertices and 12 edges

e 5interior polygons

e 6 interior (shared) edges (shown in orange)
e Each vertex has a location v; = (X; V; ;)

Simple Representation

e Define each polygon by (x,y,z) locations of its vertices
e Leads to OpenGL code such as

vertex|[1i] = vec3(x1l, vyl, zl);
vertex[1+1] = vec3(x6, y6, z6);
vertex[1+2] = vec3(xX7, y7, z7);
1+=3;

e |nefficient and unstructured
Vertices shared by many polygons are declared multiple times
Consider deleting vertex, moving vertex to new location
Must search for all occurrences

Geometry vs Topology

e Better data structures should separate geometry from
topology

Geometry: (x,y,z) locations of the vertices
Topology: How vertices and edges are connected

Example: a polygon is an ordered list of vertices with an
edge connecting successive pairs of vertices and the last
to the first

Topology holds even if geometry changes (vertex moves)

Polygon Traversal Convention

e Use the right-hand rule = counter-clockwise encirclement
of outward-pointing normal ’_

e OpenGL can treat inward and outward /RL \
facing polygons differently J y

e The order {Vvy, Vg, V5}and {V;, V,, V,} are] B b,
equivalent in that the same polygon will be ‘
rendered by OpenGL but the order 0
{Vy, V4, Vg }is different

e The first two describe outwardly facing 3

polygons)

Vertex Lists

e Vertex list: (x,y,z) of vertices (its geometry) are put in array
e Use pointers from vertices into vertex list
e Polygon list: vertices connected to each polygon (face)

X1 Y1 Z4 Example:
" V1 X 7 - Polygon P1 of
Pl || Vs 2 Y242 mesh is connected
P v X3Y3 43 to vertices (v1,v7,v6)
P3 ; X4 Y424
"""""""" g X 7 - Vertex v7 coordinates
P4 """""""" > N V8 | — > 5 y5 5. are (x7,y7,z7)
P Vg | | %6 Y6 26
v X, Y, Z
6)7 =7
topology Xg Vo Z “N
8 /8 78 geometry

Shared Edges :

e Vertex lists draw filled polygons correctly

e |f each polygon is drawn by its edges, shared edges are
drawn twice

e Alternatively: Can store mesh by edge list

Edge List

Simply draw each edges once
E.g el connects vl and v6

X1¥Y1Z4
X2 Y2 Z;
X3Y3 23
X4 Ya 24

X6 Y6 Zs
X7Y7Z,
Xg Yg Zg

X5 Y5 Zs,

Note polygons are
not represented

Modeling a Cube

* In 3D, declare vertices as (x,y,z) using point3 v[3]
« Define global arrays for vertices and colors

typedef vex3 point3;

point3 vertices|[] = {point3(-1.0,-1.0,-1.0),
point3(1.0,-1.0,-1.0), point3(1.0,1.0,-1.0),
point3(-1.0,1.0,-1.0), point3(-1.0,-1.0,1.0),
point3(1.0,-1.0,1.0), point3(1.0,1.0,1.0),
point3(-1.0,1.0,1.0)};

typedef vec3 color3;

color3 colors[] = {color3(0.0,0.0,0.0),
color3(1.0,0.0,0.0), color3(1.0,1.0,0.0),
color(0.0,1.0,0.0), color3(0.0,0.0,1.0),
color3(1.0,0.0,1.0), color3(1.0,1.0,1.0),
color3(0.0,1.0,1.0});

References

e Angel and Shreiner
e Hill and Kelley, appendix 4

