Computer Graphics
CS 543 — Lecture 5 (Part 1)
Rotations and Matrix Concatenation

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Previously: 3D Translation

e Translate: Move each vertex by same distance d = (d,, d,, d,)

translation: every vertex displaced
by same vector

Previously: 3D Translation Matrix

'ln3D: (%) (%) /tx\
y'| = |Y * t,
translate(tx,ty,tz) \ Z') \Z) \tz J
(X" 100 t) (X
y' _ 010t | |Y
4 0 01t Z
Y 000 1) \1

"Where: xX=x.1 + y.0 +z.0 +tx.1 =x +tX, ... etc

Previously: Scaling

Scale: Expand or contract along each axis (fixed point of o

S =3(Sx Sys S)

p’=Sp

w

>

o O O

o oY o

o .Y o o

X'=8, X
y'=s,X
Z'=S,X

— N < X

b AN

sExample: Sx =Sy =Sz=0.5
scales big cube (sides = 1)

to small cube (sides = 0.5)

rigin)

Today

e Nate Robbin’s demo
e Translation
e Scaling

e Derive
e Rotation

Nate Robbins Translate, Scale Rotate

Demo

World-space view Screen-space view

Command manipulation window

glTranslatef(0.00 , 0.00 ,0.00),
glRotatef(0.0 , 0.00 , 1.00 ,0.00);

glScalef(1.00 ,1.00 , 1.00)

giBegin(...);

Click on the arguments and move the mouse to modify values.

Yorld-space view

Screen-space view

Command manipulation window

Gl float pos[4] ={ 1.50 , 1.00 , 1.00 , 0.00 }
gluLookAt(0.00 ,0.00 ,2.00 , <-eye
0.00 ,0.00 ,0.00 , <~ center
0.00 ,1.00 ,0.00); <-up

glLightfy(GL_LIGHTO, GL_POSITION, pos);

Click on the arguments and move the mouse to modify values.

Rotating in 3D

e Cannot do mindless transformation like before. Why?
Many degrees of freedom. Rotate about what axis?
3D rotation: about a defined axis
Different transform matrix for:

Rotation about x-axis
Rotation about y-axis
Rotation about z-axis

Rotating in 3D

e New terminology
X-roll: rotation about x-axis
Y-roll: rotation about y-axis
Z-roll: rotation about z-axis

e Which way is +ve rotation

Look in —ve direction (into +ve arrow)

y
CCW is +ve rotation ()

e

ﬁz >

Rotating in 3D

a) the barn b) =70° x-roll

/ |

c¢) 30° y-roll d) —90° z-roll

Rotating in 3D

e For arotation angle, f# about an axis

e Define:
¢ = cos(p) s =sin(A)
x-roll or RotateX: (1 0 0 O\
O c -s O
R =
B=ly o . o
0 0 0 1)

o000
o000
o0
®
Rotating in 3D
(¢ 0 s 0)
y-roll or RotateY
O 1 0 0 Rules:
RY(IB): s 0 c 0 Write 1 in rotation row,
o column
N O 0 O 1) Write 0 in the other
rows/columns
*Write c,s in rect pattern
z-roll or RotateZ (c —s 0 0)
s ¢ 00
R —
B)=l0 0 1 o
0 0 0 1,

Example: Rotating in 3D

Question: Using y-roll equation, rotate P = (3,1,4) by 30 degrees:

Answer: ¢ = cos(30) = 0.866, s = sin(30) = 0.5, and

(¢ 0 s 0Y3) (46)

0 10 0|1 1
= 5 0 ¢ 0l4|7| 1964

0 0 0 1X1) U 1)

Linel: 3.c+1.0 +4s+1.0=4.6

3D Rotation

e Rotate(angle, ux, uy, uz): rotate by angle B about an arbitrary axis (a vector)
passing through origin and (ux, uy, uz)

AZ /(ux, uy, uz)
u

Origin S

Approach 1: 3D Rotation About eecs
Arbitrary Axis :

e Can compose arbitrary rotation as combination of:
e X-roll (by ananglef)
e Y-roll (byananglep)
o Z-roll (byanangle §,)

M =R,(8;)R,(5,)R,(5,)

~

Read in reverse order

Approach 1: 3D Rotation About
Arbitrary Axis

e Classic: use Euler’s theorem

e Euler’s theorem: any sequence of rotations = one
rotation about some axis

e Want to rotate 3 about arbitrary axis u through origin
e Our approach:

Use two rotations to align u and x-axis
Do x-roll through angle 3
Negate two previous rotations to de-align u and x-axis

Approach 1: 3D Rotation About
Arbitrary Axis

R,(£) =R, (=0)R, (#)R. (SR, (=9)R, (0)

Approach 2: Rotation using
Quartenions

e Extension of imaginary numbers from 2 to 3 dimensions
e Requires 1 real and 3 imaginary components I, J, K

0=0o+q,1+0,]+03K

e Quaternions can express rotations on sphere smoothly
and efficiently. Process:
Model-view matrix — quaternion
Carry out operations with quaternions
Quaternion — Model-view matrix

Approach 2: Rotation using
Quartenions

e Derivation skipped! Check answer

[c+(-cu,” (@-c)uu,+su, (L-c)u,u, +su,
2

(I1-cjuu, +su, c+(@-c)u, (1—c)uzuy—52uX

(l-cuu,-su, (@-cuu,-su, c+(l-c)u,

L 0 0 0

R(B) =

¢ = cos(A) s =sin(A)

Inverse Matrices

e Can compute inverse matrices by general formulas
e But easier to use simple geometric observations
Translation: T'l(dx, d, d,)=T(-d, -d, -d,)
Scaling: S (s,, s,, s,)=S(1/s,, 1/s, 1/s,)
Rotation: R "1(q) = R(-q)
Holds for any rotation matrix

Concatenating Transformations

Can form arbitrary affine transformation matrices by multiplying
rotation, translation, and scaling matrices

General form:

M1 X M2 XM3XP

where M1, M2, M3 are transform matrices applied to P
Be careful with the order!!

For example:

Translate by (5,0) then rotate 60 degrees NOT same as
Rotate by 60 degrees then translate by (5,0)

Concatenation Order

e Note that matrix on right is first applied
e Mathematically, the following are equivalent

p’ = ABCp = A(B(Cp))

e Efficient!!

Matrix M=ABC is composed, then multiplied by many vertices

Cost of forming matrix M=ABC not significant compared to
cost of multiplying (ABC)p for many vertices p one by one

Rotation About a Fixed Point other
than the Origin

Move fixed point to origin
Rotate
Move fixed point back

M = T(ps) R(0) T(-py)

Yy . ¥
A
, P
. ®
7 P

]
A

-

Scale about Arbitrary Center

e To scale about arbitrary point P = (Px, Py, Pz) by (Sx, Sy, Sz)
Translate object by T(-Px, -Py, -Pz) so P coincides with origin
Scale the object by (Sx, Sy, Sz)
Translate object back: T(Px, Py, Py)

e In matrix form: T(Px,Py,Pz) (Sx, Sy, Sz) T(-Px,-Py,-Pz) * P

) (1 0 0 PxXYS, 0 0 0Y1L 0 0 —Px)x
yl 1010 Pyyo s, 0 0}j0 1 0 -Pyjy
211001 Pz|O 0 S, 0[0 01 —Pz|z
1) looo 1) 0o 0o o 10000 1)1

"\WWhat about rotation about arbitrary center?

Instancing

e During modeling, often start with simple object centered at
origin, aligned with axis, and unit size

e Can declare one copy of each shape in scene

e Then apply instance transformation to its vertices to
Scale T T
Orient 0D .
Locate

References

e Angel and Shreiner, Chapter 3

e Hill and Kelley, Computer Graphics Using OpenGL, 3™
edition

