Computer Graphics
CS 543 — Lecture 5 (Part 3)
Viewing

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Objectives

e Introduce viewing functions
e Look at alternate camera controls

3D Viewing?

e Note: View volume may have different shapes

viewing

volume

model

tripod

Computer Viewing

e There are three aspects of viewing process, al
which are implemented in the pipeline,
Positioning the camera
Setting the model-view matrix
Selecting a lens
Setting the projection matrix

Clipping
Setting the view volume

of

The OpenGL Camera

e In OpenGl, initially object and camera frames are
the same
Default model-view matrix is an identity

e Camera located at origin and points in negative z
direction

e OpenGL also specifies a default view volume that is
a cube with sides of length 2 centered at origin

Default projection matrix is an identity

Default Projection

Default projection is orthogonal

View volume (only
objects inside are seen)

N

clipped out

/

v

I
Jrmdmr e ———— X

| Projection plane

z=0

Nate Robbins LookAt Demo

World-space view Screen-space view

Command manipulation window

glTranslatef(0.00 , 0.00 ,
glRotatef(0.0 ,0.00 ,
glScalef(1.00 , 1.00

giBegin(...);

Click on the arguments and move the mouse to modify values.

Yorld-space view

Screen-space view

Command manipulation window

Gl float pos[4] ={ 1.50 , 1.00 , 1.00 , 0.00 }
gluLookAt(0.00 ,0.00 ,2.00 , <-eye
0.00 ,0.00 ,0.00 , <~ center
0.00 ,1.00 ,0.00); <-up

glLightfy(GL_LIGHTO, GL_POSITION, pos);

Click on the arguments and move the mouse to modify values.

Moving the Camera Frame

e |f we want to visualize object with both positive and
negative z values we can either

Move the camera in the positive z direction
Translate the camera frame

Move the objects in the negative z direction
Translate the world frame

e Both of these views are equivalent and are
determined by the model-view matrix

Want a translation (Translate(0.0,0.0,-d);)
d >0

Moving Camera back from Origin

frames after translation by —d
d>0

default frames

Y. Ye Ye A

(a) (b)

Moving the Camera

e We can move the camera to any desired position
by a sequence of rotations and translations
e Example: side view A

e Rotate the camera
e Move it away from origin

e Model-view matrix C=TR X
M
R

OpenGL code

e Remember that last transformation specified
is first to be applied

// Using mat.h

mat4 t = Translate (0.0, 0.0, -d);
mat4 ry = RotateY(90.0);
mat4d m = t*ry;

The LookAt Function

e The GLU library contained function gluLookAt to form
required modelview matrix

e Note the need for setting an up direction
e Replaced by LookAt() in mat.h

Can concatenate with modeling transformations
e Example: isometric view of cube alighed with axes

void display(){

mat4d mv = LookAt(vec4 eye, vecd at, vecd up);

gluLookAt

LookAt(eye, at, up)

(UPXI Upyt UPZ) ® s ”

3
-;’
A
Z

(eye,, eye,, eye_)

Programmer defines: eye position
LookAt point (at) and Up vector
Up direction usually set to (0,1,0)

References

e Angel and Shreiner
e Hill and Kelley, appendix 4

