Computer Graphics
CS 543 — Lecture 6 (Part 1)
Setting Camera & Camera Controls

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Camera with Arbitrary Orientation §§:
and Position T

e Programmer defines eye, lookAt and Up

e Goal:
e Form new axes at camera
e Transform objects from world to eye camera frame

World coordinate
Frame

Eye coordinate
Frame N

000
Camera with Arbitrary eecs
Orientation and Position -
e Define new axes at eye
e v points vertically upward,
e naway from the view volume, World coordinate

Frame

e uatright angles to both nand v.
e The camera looks toward -n.

e All vectors are normalized.

Eye coordinate
Frame

LookAt and Camera Coordinate System

e Effect of LookAt
e Programmer changes eye, lookAt point
e u,v,n changes

Viewing Transformation

e Transformation?
Form a camera (eye) coordinate frame
Transform objects from world to eye space
e Eye space?

Transform to eye space can simplify many downstream
operations (such as projection) in the pipeline
0,10 (10.0)

Viewing Transformation

e OpenGL previously had gluLookAt
e We implement similar LookAt function
e LookAt call transforms the object from world to
eye space by:
Constructing eye coordinate frame (u, v, n)

Composes matrix for coordinate transformation
Allows flexible Camera Control

Eye Coordinate Frame

e Constructing u,v,n?
e Known: eye position, LookAt Point, up vector
e To find out: new origin and three basis (u,v,n) vectors

Lookat Point s Assumption: direction of view is
o _7/_'" eve orthogo_nal to yiew plan_e (plane
0 L‘/ that objects will be projected onto)

90

A

v

Eye Coordinate Frame

e Origin: eye position (that was easy)

e Three basis vectors:

one is the normal vector (n) of the viewing plane,

other two (u and v) span the viewing plane

Lookat Point

A

world origin

[
»

(u,v,n should all be orthogonal)

N is pointing away from the
world because we use left
hand coordinate system

N = eye — Lookat Point
n N / | N|

T

Remember u,v,n should
be all unit vectors

Eye Coordinate Frame

e How about u and v?

e\We can get u first -
eu is a vector that is perp
to the plane spanned by
N and view up vector (V_up)

U=V up X n

v

u U/ |U]|

Eye Coordinate Frame

How about v?

V_ Knowing n and u, getting v
IS easy
) Lookat V= nxu

Vv is already normalized

v

Eye Coordinate Frame

Put it all together

Lookat

v

Eye space origin: (Eye.x , Eye.y,Eye.z)
Basis vectors:
(eye — Lookat) / | eye — Lookat]|

(W upx n)/ |V upxn|
n x u

n
u

(Y X
o000
o0
O
World to Eye Transformation
e Next, use u, v, n to compose V part of modelview
e Transformation matrix (M,,,.) ?
P’ = MWZex P
Vv u 1. Come up with the transformation
Ly \A sequence to move eye coordinate
P N frame to the world
(@)
world 2. And then apply this sequence to the
point P in a reverse order

World to Eye Transformation

Rotate the eye frame to “align” it with the world frame
Translate (-ex, -ey, -ez)

Rotation: ux uy uz
v VX VY VZ
U nx n
Yy Nz
* y \L' N O O O
(ex,ey,ez)
world
> X Translation: 1 O O
O 1 O
O O 1
O O O

pOoOQC

-eXx

-ey
-eZ

World to Eye Transformation

Transformation order: apply the transformation to the object in a
reverse order - translation first, and then rotate

Mw2e = ux uy ux O 1 0 0 -ex
vx vy vz O O 1 0 -ey
nx ny nz O O 0 1 -ez
O 0 O 1 O 0 O 1
V. _u
y \A N uUux uy uz -e.u
(ex,ey,ez) _|vx vy vz -e.vV
worl|d — nx ny nz -e.n
X O 0O O 1

Note: e.u = ex.ux + ey.uy + ez.uz

lookAt Implementation (from mat.h)

matd4d LookAt(const vec4& eye, const vec4& at, const
vec4é& up)

{
vec4d n = normalize(eye - at);
vecd4 u = normalize(cross(up,n));
vecd4 v = normalize(cross(n,u));
vec4 t = vec4(0.0, 0.0, 0.0, 1.0);
mat4 ¢ = mat4(u, v, n, t);

return ¢ * Translate(-eye);

Other Camera Controls

e The LookAt function is only one possible API for
positioning the camera

e Other ways to specify camera position/movement
Yaw, pitch, roll

Elevation, azimuth, twist
Direction angles

Flexible Camera Control

e Sometimes, we want camera to move
e Like controlling a airplane’s orientation

e Adopt aviation terms for this
e Pitch: nose up-down
e Roll: roll body of plane
e Yaw: move nose side to side

a) pitch b) roll C) yaw

u

Yaw, Pitch and Roll Applied to Camera

e Similarly, yaw, pitch, roll with a camera

a) camera orientation b) with roll ¢) no roll

Flexible Camera Control

e May create a camera class

class Camera
private:
Point3 eye;
Vector3 u, v, n;... etc

e Let user specify pitch, roll, yaw to change camera. E.g

cam.slide(-1, 0, -2); // slide camera forward and left
cam.rol1(30); // roll camera through 30 degrees
cam.yaw(40) ; // yaw 1t through 40 degrees
cam.pitch(20); // pitch 1t through 20 degrees

Implementing Flexible Camera Control

Main idea behind flexible camera control
Camera class maintains current (u,v,n) and eye position
User inputs desired roll, pitch, yaw 0, ¢ angle or slide

Calculate modified vector (u, v, n) or new eye position after
applying roll, pitch, slide, or yaw

Compose new modelview matrix yourself
Set CTM to modelview matrix

Load Matrix into CTM

void Camera::setModelViewMatrix(void)

{ // load modelview matrix with camera values

mat4d m;

ux uy uz
VX VY VZ
nxX ny nz
O 0O O

Vector3 eVec(eye.x, eye.y, eye.z);// eye as vector
m[12] = -dot(eVec,u)

m[O] = u.x; m[4] = u.y; m[8] = u.z;
m[1] = v.x; m[5] = v.y; m[9] = v.z;
m[2] = n.x; m[6] = n.y; m[10] = n.z;
m[3] = O; m[7] = O; m[11] = O;

m[13]
m[14]
m[15]

Finally, load matrix m into CTM Matrix

-dot(eVec,V);
-dot(eVec,n);
1.0;

« Call setModelViewMatrix after slide, roll, pitch or yaw

* Slide changes eVec,

* roll, pitch, yaw, change u, v, n

-e. u
-e .V
-e . n
1

Example: Camera Slide

e User changes eye by delU, delV or delN
e eye = eye + changes
e Note: function below combines all slides into one

voild camera::slide(float delU, float delV, float delN)
{
eye.x += delU*u.x + delV*v.x + delN*n.x;
eye.y += delU*u.y + delV*v.y + delN*n.y;
eye.z += delU*u.z + delV*v.z + delN*n.z;
setModelViewMatrix();

E.g moving camera by D along its u axis
= eye + Du

000
000
o0
o
Example: Camera Roll
v\ v u'= cos(a)u +sin(a)v
\ : .
\ i V'=—sin(a)u +cos(a)V
\ o
\|—— o
—— » U Reference: Sections 7.2, 7.3 of Hill and Kelley
- \
\

void Camera::roll(float angle)

{ // roll the camera through angle degrees
float cs = co0s(3.142/180 * angle);
float sn = sin(3.142/180 * angle);
Vector3 t = u; // remember old u
u.set(cs*t.x — sn*v.x, cs*t.y — sn.v.y, cs*t.z — sn.v.z);
v.set(sn*t.x + cs*v.x, sn*t.y + cs.v.y, sn*t.z + cs.v.z)
setModelViewMatrix();

References

e Angel and Shreiner, Chapter 4

e Hill and Kelley, Computer Graphics using OpenGL, 3"
edition

