Computer Graphics
CS 543 — Lecture 6 (Part 2)
Projection (Part 1)

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Objectives

e Understand what is projection?
e Types of projection
Orthographic
Perspective Projection
e Derive projection matrices
Orthographic projection
Perspective projection

e Implementation

3D Viewing and View Volume

e Recall: 3D viewing set up

viewing

volume

tripod model

Projection Transformation

e View volume can have different shapes
e Different types of projection:
parallel, perspective, etc
e Control view volume parameters
Projection type: perspective, orthographic, etc.
Field of view and aspect ratio
Near and far clipping planes

Perspective Projection

e Similar to real world

e object foreshortening: Objects appear larger if
closer to camera

Perspective Projection

e Need:
Projection center
Projection plane
e Projection?
Draw line from object to projection center
Calculate where each cuts projection plane

Projectors \

camera
¥~ Object in 3 space

Projected image

S el .

Ao

rojection plane
proj P VRP

COP

Orthographic Projection

e No foreshortening effect — object distance from
camera does not matter

e The projection center is at infinite
e Projection calculation — just drop z coordinates

Field of View

e View volume parameter
e Determines how much of world is taken into picture
e Larger field of view = smaller object projection size

field of view CEnter of projection

(view angle) \

Near and Far Clipping Planes

e Only objects between near and far planes are drawn

Near plane
\\

Far plane
/

Viewing Frustrum

e Objects outside the frustum are clipped

e Near plane + far plane + field of view = Viewing
Frustum

Near plane

\ Far plane

Viewing Frustum

Applying Projection Transformation

e Previous OpenGL projection commands deprecated!!
Perspective projection:

gluPerspective(fovy, aspect, near, far) or
glFrustum(left, right, bottom, top, near, far)
Orthographic:
glortho(left, right, bottom, top, near, far)
e Useful transforms so we implement similar in mat. h:

Perspective(fovy, aspect, near, far) or
Frustum(left, right, bottom, top, near, far)
Ortho(left, right, bottom, top, near, far)

Perspective(fovy, aspect, near, far)

e Aspect ratio is used to calculate the window width

front plane

. <—Ty < fovy

Aspect=w/h

Frustum(left, right, bottom, top, near, far)

e Can use this function in place of Perspective()
e Same functionality, different arguments

left top

Ortho(left, right, bottom, top, near, far)

e For orthographic projection

\\\\\\\\

near
far

near and far measured from camera

Example Usage:
Setting Projection Transformation

void display()

1
glClear(GL_COLOR_BUFFER_BIT);

// Set up camera position
mat4 model view = LookAt(0,0,1,0,0,0,0,1,0);

// set up perspective transformation
matd projection = Perspective(fovy, aspect,
near, far);

// draw something
display all(); // your display routine

Demo

e Nate Robbins demo on projection

World-space view Screen-space view

Command manipulation window

fovy aspect zNear zFar
gluPerspective(60.0 ,1.00 ,1.0 ,10.0);
gluLookAt(0.00 ,0.00 ,2.00 , <-eye
0.00 ,0.00 ,0.00 , <- center

0.00 ,1.00 ,000); <-up

Click on the arguments and move the mouse to modify values.

Projection Transformation

e Projection? map the object from 3D space to 2D
screen

Perspective: Perspective() Parallel: Ortho()

Default Projections and Normalization

e What if you user does not set up projection?

e Default OpenGL projection in eye (camera) frame is
orthogonal (Ortho());

e To project points within default view volume
X, = X
Yo=Y
z,=0

. 000
Homogeneous Coordinate 0eco
000
Representation oo
default orthographic projection
X, = X — M
yp =y pp - P
z,=0 _ _
w, =1 1 0 0 O
/ \ M = 0100) Def_ault_
Vertices before | | Vertices after 0O 0 0 O ‘ Eﬂrggrei)c(:tlon
Droioct o
rojection Projection _O 0 0 1_

In practice, can let M =1, set the z term to zero later

Normalization

e Most graphics systems use view normalization

e Instead of deriving different projection matrix for
each type of projection

Normalization: convert all other projection types to
orthogonal projections with the default view volume

e Specifically, projection transform matrices convert
other projection types to default view volume

e Allows use of the same rendering pipeline for
different projection types

e Later, makes for efficient clipping

Pipeline View

4D —» 3D

: —>-

against canonical cupe S0 — 2D

Parallel Projection :

e Approach: Project everything in the visible volume into a
canonical view volume (cube)

e normalization = find 4x4 matrix to convert specified view
volume to default

(right,top,-far)

User-specified
View Volume

(.Ir.l/".l)

—

Canonical
View Volume

& -
(left bottom,-near) (-1,-1,1)

Ortho(left, right, bottom,
top,near, far)

Parallel Projection: Ortho

e Parallel projection can be broken down into two
parts
1. Translation: which centers view volume at origin

2. Scaling: which reduces cuboid of arbitrary dimensions to
canonical cube (dimension 2, centered at origin)

Parallel Projection: Ortho

Translation sequence moves midpoint of view volume to
coincide with origin:

E.g. midpoint of x = (right + left)/2
Thus translation factors:

-(right + left)/2, -(top + bottom)/2, -(far+near)/2
And translation matrix M1.:

(1 0 0 —(right +left)/2)
0 1 0 - (top + bottom)/?2
0 0 1 —(far +near)/?2

0 0 O 1)

Parallel Projection: Ortho

Scaling factor is ratio of cube dimension to Ortho view volume
dimension

Scaling factors:
2/(right - left), 2/(top - bottom), 2/(far - near)
Scaling Matrix M2:

2

, 0 0
right — left
0 2 0 0
top —bottom
0 0 2
far —near
0 0 0 1

Parallel Projection: Ortho

Concatenating M1xM2, we get transform matrix used by glOrtho

2

: 0
right —left
2
top — bottom
0 0 2
far —near
0 0 0
2
right — left
P=ST-=
0
0

0

0
X

1
0
2

top —bottom
0
0

1 0 0 —(right +left)/2
0 1 0 - (top + bottom)/2
0 0 1 —(far +near)/?2
0O 0 O 1
0 _ right —left
right — left
_ top +bottom
top —bottom
2 far + near
near — far far —nnear
0 1

Final Ortho Projection

e Setz=0

e Equivalent to the homogeneous coordinate
transformation

I\/Iorth -

o O O O
R O O O

o o o -
o O — O

e Hence, general orthogonal projection in 4D is
P=M_,ST

References

e Angel and Shreiner, Chapter 4

e Hill and Kelley, Computer Graphics using OpenGL, 3"
edition

