Computer Graphics
CS 543 — Lecture 7 (Part 2)
Lighting, Shading and Materials (Part 2)

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Modified Phong Model

[=k;I, I'n+k L (v-r)*+k L

e Specular term in Phong model requires
calculation new reflection vector (r) and view
vector (v) for each vertex

e Blinn suggested approximation using halfway
vector that is more efficient

The Halfway Vector

e his normalized vector halfway between | and v

h=(l+v)/|l+V]

i

Using the halfway vector

e Replace (V- r)* by(n-h)b
e [3is chosen to match shininess

e Note that halfway angle is half of angle between |
and Vv if vectors are coplanar

e Resulting model is known as the modified Phong
or Blinn lighting model

e Specified in OpenGL standard

Example

Only differences In
these teapots are
the parameters

In the modified
Phong model

Computation of Vectors

To calculate lighting at vertex P
Need |, n, r and v vector at vertex P

User specifies:
Light position |
Viewer (camera) position
Vertex (mesh position)

|: Light position — Vertex position
V: Viewer position — vertex position
Normalize all vectors!

Calculating Mirror Direction Vector r

e Can compute r from | and n
e |, nand r are co-planar

e Problem is determining n

r=2{0-n)n-|

Finding Normal, n

e OpenGL leaves determination of normal to
application
OpenGL previously calculated normal for GLU quadrics and
Bezier surfaces. Now deprecated
e N calculation differs depending on surface

representation
n

OpenGL Application I
Calculates n

[

GLSL Shader

Plane Normals

e Equation of plane: ax+by+cz+d =0

- S

e Plane is determined by either

three points p,, p,, p; (on plane)
or normal n and 1 point p,

e Normal can be obtained by

N =(p,-py) X (P1-Po) b,

Cross product method

P2
Po

Normal for Triangle

plane n+(p-p,)=0 P>

N=(P,-Py) X(P;-Py)
P
normalize n <« n/|n| Po

Note that right-hand rule determines outward face

Newell Method for Normal Vectors | ¢

e Problems with cross product method:
e calculation difficult by hand, tedious
e If 2 vectors almost parallel, cross product is small
e Numerical inaccuracy may result
P1
po%:pz
e Proposed by Martin Newell at Utah (teapot guy)
e Uses formulae, suitable for computer

e Compute during mesh generation
e Robust!

Newell Method for Normal Vectors
e Formulae: Normal N = (mx, my, mz)

N -1

m, = Z(yl o ynext(i)xzi + Znext(i))

1=0

N —

Z (Zi _ Znext(i) Xxi + Xnext(i))

=0

[E—

m,

m, = - (Xi o Xnext(i)xyi + ynext(i))

Newell Method Example

e Example: Find normal of polygon with vertices
PO =(6,1,4), P1=(7,0,9) and P2 =(1,1,2)

e Using simple cross product:
((71019)_(6/114)) X ((1;1;2)_(6/114)) = (21_231_5)

Using Newell method, plug in values result is same:
Normalis (2, -23, -5)

Normal to Sphere

e Implicit function f(x,y.z)=0
e Normal given by gradient

e Sphere f(p)=p-p-1
e n =[0f/0x, of/dy, of/oz]'=p

Parametric Form o

e For sphere
x=X(u,v)=cos u sin v
y=y(u,V)=CcO0Ss u CoSs V
z=z(u,v)=sin u

e Tangent plane determined by vectors

op/ou = [0x/0u, dy/ou, 0z/ou]T
op/ov = [0x/0v, 0y/ov, 0z/ov]T

e Normal given by cross product
n=0p/du X op/ov

OpenGL shading
e Need
Normals

material properties
Lights
e State-based shading functions (gINormal,
glMaterial, glLight) have been deprecated
e 2 options:
Compute lighting in application
or send attributes to shaders

Specifying a Point Light Source

e For each light source, we set RGBA for diffuse,
specular, and ambient components, and its position

e Alpha =transparency

Red Green Blue Alpha
N \ /
vec4 diffuseO =vec4(1.0, 0.0, 0.0, 1.0);
vec4 ambientO = vec4(1.0, 0.0, 0.0, 1.0);

vec4 specularO = vec4(1.0, 0.0, 0.0, 1.0);
vec4 lightO _pos =vecf§}50,/3ﬁ0, 3,0, 1.0);
X y z w

Distance and Direction

vec4 lightO _pos =vec4(1.0, 2.0, 3,0, 1.0);

VAV

X y z W

e Position is in homogeneous coordinates
If w=1.0, we are specifying a finite (x,y,z) location
If w=0.0, light at infinity
(x/w = infinity if w = 0)

e Distance term coefficients usually quadratic

(1/(a+b*d+c*d*d)) where d is distance from vertex to
the light source

Computation of Vectors

e To calculate lighting at vertex P
Need |, n, r and v vector at vertex P
e |: Light position — Vertex position

e V: Viewer position — vertex position

CTM Matrix passed into Shader

e Recall: CTM matrix concatenated in application

mat4 ctm = RotateX(30)*Translate(4,6,8);
e Connected to matrix ModelView in shader

e Recall: CTM matrix contains object transform + Camera

in vec4 vPosition;
Uniform mat4 ModelView ;

main()

d

// Transform vertex position into eye coordinates
vec3 pos = (ModelView * vPosition).xyz;

Computation of Vectors

e CTM transforms vertex position into eye coordinates

Eye coordinates? Object, light distances measured from eye
e Normalize all vectors! (magnitude = 1)
e GLSL has a normalize function
e Note: vector lengths affected by scalingI

// Transform vertex position into eye coordinates
vec3 pos = (ModelView * vPosition).xyz; P

vec3 L = normalize(LightPosition.xyz - pos); // light vector
vec3 E = normalize(-pos); // view vector
vec3 H = normalize(L + E); // Halfway vector

Spotlights

e Derive from point source
e Direction | (of lobe center)
e Cutoff: No light outside 0
e Attenuation: Proportional to cos*¢

Intensity

Global Ambient Light

e Ambient light depends on light color

Red light in white room will cause a red ambient term
e Previous ambient component added at vertices

e Global ambient term may be added separately
globally

e Often helpful for testing

Moving Light Sources

e Light sources are geometric objects whose
positions or directions are affected by the model-
view matrix

e Depending on where we place the position
(direction) transformation command, we can
Move light source(s) with object(s)
Fix object(s) and move light source(s)
Fix light source(s) and move object(s)
Move light source(s) and object(s) independently

Material Properties

Material properties also has ambient, diffuse, specular
Material properties specified as RGBA

Reflectivities

W component gives opacity

Default? all surfaces are opaque
Red Green Blue Opacity

_ NN/
vec4 ambient = vec4(0.2, 0.2, 2,
vec4 diffuse = vec4(1.0, 0.8, 0, ;
vec4(1.0, 1.0, 1.0, 1 0)
100.0

AN

Material
Shininess

e
oo
o

vec4 specular
GLfloat shine

Front and Back Faces

e Every face has a front and back

e For many objects, we never see the back face so we
don’t care how or if it’s rendered

e If it matters, we can handle in shader

Q aw @

back faces not visible back faces visible

Emissive Term

e Some materials glow
e Simulate in OpenGL using emissive component

e This component is unaffected by any sources or
transformations

Lighting Calculated Per Vertex °

e Phong model (ambient+diffuse+specular) calculated
at each vertex to determine vertex color

e Per vertex calculation? Usually done in vertex shader

Al

7

Shading?

e After triangle is rasterized/drawn

Per-vertex lighting calculation means we know color of
pixels coinciding with vertices (red dots)

e Shading determines color of interior surface pixels
e How? Assume linear change => interpolate

_//|\

Shading

Implementing Polygonal Lighting °

e Per vertex lighting calculations can be done either

e In application: Vertex colors become vertex shades
and can be sent to vertex shader as vertex attribute

e Inshader: send parameters to vertex shader,
computer lighting

Flat Shading

e 2 types of Shading:
e Flat shading
e Smooth shading

e Flat shading - compute lighting once for each
face, assign color to whole face

Flat shading -

e Only use face normal for all vertices in face and
material property to compute color for face

e Benefit: Fast!

e Used when: ol | -
e Polygon is small enough '

e Light source is far away (why?)
e Eyeis very far away (why?)

e Previous OpenGL command: deprecated!
glShadeModel(GL_FLAT)

Mach Band Effect s

e Flat shading suffers from “mach band effect”

e Mach band effect — human eyes accentuate
the discontinuity at the boundary

perceived intensity

PENZN

Side view of a polygonal surface

L

Flat Shading Implementation

e Flat shading implementation: Use uniform
variable to shade with single shade

References

e Angel and Shreiner
e Hill and Kelley, chapter 8

