Computer Graphics
CS 543 — Lecture 7 (Part 3)
Lighting, Shading and Materials (Part 3)

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Smooth shading

e Fix mach band effect —remove edge discontinuity
e Compute lighting for more points on each face

e 2 popular methods:
e Gouraud shading
e Phong shading

A 4

Flat shading Smooth shading

Gouraud Shading

e Lighting calculated for each polygon vertex
e Colors are interpolated for interior pixels

e Interpolation? Assume linear change from one
vertex color to another

Gouraud Shading

e Compute vertex color in vertex shader

e Shade interior pixels: color interpolation
(normals are not needed)

C1l

for all scanlines

v

Ca=lerp(C1, C2) Cb =lerp(C1, C3)

C?2 C3

* . . .
Lerp(Ca, Cb) lerp: linear interpolation

coe
i
Gouraud Shading -
e Linear interpolation
@ O o x= b/(atb) *vl + al/(atb) * v2
—— a | b ——
vl X V2

e Interpolate triangle color
e use y distance to interpolate two end points in scanline,
e and use x distance to interpolate interior pixel colors

!

Linear Interpolation Example

e a=60,b=40

e RGBcoloratvl=(0.1,0.4,0.2)

e RGB coloratv2 =(0.15, 0.3, 0.5)

e Redvalue of vl =0.1, red value of v2 =0.15

o O O
—— 60— 40—
0.1 X 0.15

Red value of x = 40/100 * 0.1 + 60/100 * 0.15
=0.04 +0.09=0.13

Similar calculations for Green and Blue values

Gouraud Shading Function 13
(Pg. 433 of Hill)

for(Int Yy = VYpores Y < Yiop: Y*tt) // for each scan line

{

Find Xjepe and Xpjgne
find color s and color

color;,. = (color g, - COMOF e)/ (Kyighe — Xiefr)
For(Int X = Xjepe, € = COMON s X < Xpjgnes

x++, c+ = color;,.)

{
put c Into the pixel at (X, y)
+
+

Smooth Shading Implemenation °

e Use varying declaration for interpolation

e Vertex lighting interpolated across entire face pixels
if passed to the fragment shader as a varying
variable (smooth shading)

1.

Vertex shader: Calculate output color in vertex shader,
Declare output vertex color as varying

Fragment shader: Use varying color type, already
interpolated!! _—

Mesh Shading

e For meshes, already know how to calculate face
normals (e.g. Using Newell method)

e For polygonal models, Gouraud proposed using
average of normals around a mesh vertex

n = (Ny+n,+ngtn,)/ [N+, +ng+ny|

Normals Variability

e Triangles have a single normal

e Shades at the vertices as computed by the Phong
model can be almost same

e Identical for a distant viewer (default) or if there is no

specular component
e Consider a sphere
e Want different normals at
each vertex

Smooth Shading

e We can set a hew normal
at each vertex

e Easy for sphere model
e |f centered atoriginn=p

e Now smooth shading
works

e Note silhouette edge _—

Gouraud Vs Phong Shading -

e Gouraud Shading: interpolates vertex colors
e Find vertex normals
e Apply modified Phong model at each vertex
e Interpolate vertex colors across each polygon
e Phong shading: interpolates vertex normals
e Find vertex normals
e Interpolate vertex normals across edges
e Interpolate edge normals across polygon

e Use interpolated normal to apply modified Phong model
at each fragment

Gouraud Shading Problem

e If polygon mesh surfaces have high curvatures, Phong
shading may look smooth while Gouraud shading
may show edges

e Lighting in the polygon interior can be inaccurate

Gouraud | Gouraud

Phong Shading

e Need normals for all pixels — not provided by user

e Instead of interpolating vertex color

Interpolate vertex normal to calculate normal at
each each pixel inside polygon

Use pixel normal to calculate Phong at pixel (per
pixel lighting)
e Phong shading algorithm interpolates normals
and compute lighting during rasterization

(need to map normal back to world or eye space though)

Phong Shading

e Normal interpolation

na = lerp(nl, n2)

lerp(na, nb)
n2

nl

nb = lerp(nl, n3)

Gouraud Vs Phong Shading Comparison

e Phong shading requires more work than Gouraud
shading

Until recently not available in real time systems
Now can be done using fragment shaders

Per-Vertex Lighting Shaders |

/Il vertex shader

In vec4 vPosition:

In vec3 vNormal;

out vec4 color; //vertex shade

// light and material properties

uniform vec4 AmbientProduct, DiffuseProduct, SpecularProduct;
uniform mat4 ModelView;

uniform mat4 Projection;

uniform vec4 LightPosition;

uniform float Shininess;

Per-Vertex Lighting Shaders i

void main()

{
// Transform vertex position into eye coordinates
vec3 pos = (ModelView * vPosition).xyz;

vec3 L = normalize(LightPosition.xyz - pos),
vec3 E = normalize(-pos);
vec3 H = normalize(L + E);

// Transform vertex normal into eye coordinates
vec3 N = normalize(ModelView*vec4(vNormal, 0.0)).xyz;

Per-Vertex Lighting Shaders Il

// Compute terms in the illumination equation
vecd ambient = AmbientProduct;

float Kd = max(dot(L, N), 0.0);

vecd diffuse = Kd*DiffuseProduct;

float Ks = pow(max(dot(N, H), 0.0), Shininess);

vecd specular = Ks * SpecularProduct;

If(dot(L, N) <0.0) specular = vec4(0.0, 0.0, 0.0, 1.0);
gl_Position = Projection * ModelView * vPosition;

color = ambient + diffuse + specular;
color.a = 1.0;

Per-Vertex Lighting Shaders IV

/[fragment shader
In vec4 color;

void main()

{

gl _FragColor = color;

¥

Per-Fragment Lighting Shaders |

/] vertex shader
In vec4 vPosition:
In vec3 vNormal:

// output values that will be interpolatated per-fragment
out vec3 fN;
out vec3 fE;
out vec3 fL;

uniform mat4 ModelView;
uniform vec4 LightPosition;
uniform mat4 Projection;

Per-Fragment Lighting Shaders i

void main()

{

fN = vNormal;
fE = vPosition.xyz;
fL = LightPosition.xyz,

If(LightPosition.w '=0.0) {
fL = LightPosition.xyz - vPosition.xyz;

¥

gl_Position = Projection*ModelView*vPosition;

Per-Fragment Lighting Shaders IlI

// fragment shader

I/ per-fragment interpolated values from the vertex shader
In vec3 fN;

In vec3 fL;
In vec3 fE:;

uniform vec4 AmbientProduct, DiffuseProduct, SpecularProduct;
uniform mat4 ModelView;

uniform vec4 LightPosition;

uniform float Shininess;

Per=Fragment Lighting Shaders IV

void main()

{

// Normalize the input lighting vectors

vec3 N = normalize(fN);
vec3 E = normalize(fE);
vec3 L = normalize(fL);

vec3 H =normalize(L + E);
vecd ambient = AmbientProduct;

Per-Fragment Lighting Shaders V

float Kd = max(dot(L, N), 0.0);
vecd diffuse = Kd*DiffuseProduct:

float Ks = pow(max(dot(N, H), 0.0), Shininess);
vec4 specular = Ks*SpecularProduct;

// discard the specular highlight if the light's behind the vertex
If(dot(L, N) <0.0)
specular = vec4(0.0, 0.0, 0.0, 1.0);

gl _FragColor = ambient + diffuse + specular,
gl _FragColor.a = 1.0;

¥

Physically-Based Shading Models

e Phong model produces pretty pictures

e Cons: empirical (fudged?) (cos%g), plastic look

e Shaders can implement more lighting/shading models
e Big trend towards Physically-based models

e Physically-based?

Based on physics of how light interacts with actual surface
Dig into Optics/Physics literature and adapt results

e Classic: Cook-Torrance shading model (TOGS 1982)

Cook-Torrance Shading Model

e Similar ambient and diffuse terms to
e More complex specular component than (cos%),
e Define new specular term

F(¢,7)DG

(m-v)

cos” ¢ —

e Where

D - Distribution term
G — Geometric term
F — Fresnel term

e Now, explain each term

Distribution Term, D

e Basic idea: model surfaces as made up of small V-shaped
grooves or “microfacets”

\ t Average
Incident \ ¢ normal m
on /\/\M\/

e Many grooves occur at each surface point

e Only perfectly facing grooves contribute

e D term expresses groove directions

e D expresses direction of aggregates (distribution)

e E.g. half of grooves at hit point face 30 degrees, etc

Cook-Torrance Shading Model

Only microfacets with normal of V pointing in direction of halfway vector,
h =s + v, contributes

Define angle o as deviation of h from surface normal
D(0) is fraction of microfacets facing angle o
Can actually plug old Phong cosine (cos"¢), in as D
More widely used is Beckmann distribution
tan ()’
1 e‘(T)
4m? cos*(9)

D(5) =

Where m expresses roughness of surface

Cook-Torrance Shading Model

e m is actually Root-mean-square (RMS) value of slope
of V-groove

e Basically, m exresses slope of V-groove
e m = 0.2 for nearly smooth
e m = 0.6 for very rough

Microfacet Slope

* Slope . [
~6

o

U U o
A

 Beckmann Distribution of Microfacet Slope

TTTeTT |£ln:(1 !
1) Hl:1 20.

—] e nm = —
2 2 T
N JTm COS (94

Beckmann

Other Microfacet Distributions

* Some popular distributions

H ' In 2
B Blinn D () =cos" ¢ =
Incos
{cy) JE
B Torrance-Sparrow D,(@) =e¢ c, =?

(1—¢i)cos’ a—1

B Trowbridge-Reitz D,(x) =
;
. cos’ f-1 |~
" cos’ B2

Self-Shadowing

* Geometric Term, G

Without self-shadowing With self-shadowing

Geometric Term, G

e Surface may be so rough that interior of grooves is
blocked from light by edges

This is known as shadowing or masking
Geometric term G accounts for this
Break G into 3 cases:

G, case a: No self-shadowing

Z.

e Mathematically, G=1

—

JTANAN

Geometric Term, G

e G, case b: No blocking of incident light, partial
blocking of exitting light (masking)

e Mathematically,

_2(m-h)(m-h)

Gm
h-s

Geometric Term, G

e G, case c: Partial blocking of incident light, no
blocking of exitting light (shadowing)

e Mathematically,

_2(m-h)(m-h)

Gm
h-s

e G term is minimum of 3 cases, hence

G=06G,,G,)

Fresnel Term, F

e S0, again recall that specular term

F(¢,7)DG
(m-v)
e Microfacets are not perfect mirrors
e Fterm, F(¢ n) gives fraction of incident light reflected

e ¢isincident angle, nis refractive index of material

- Llo-f {1+(C(g“”j }
2(g+c) c(g-c)-1

e wherec=cos(@d)=m.sandg’=r?*c’+1

SPEcC =

Fresnel Term, F

e Combining expressions

F(¢,7)DG

(m-v)
e In above expression for F, could simply use FDG
e Why divide by m.v?

e Accounts for why when eye is close to surface, more
microfacets are seen per solid angle than when eye is
close to normal

SPEcC =

Fresnel Term, F

e Refractive index, 7 is actually wavelength dependent
which also makes F wavelength dependent

| =1_k,F(0,7)+1,d@ k, xlambert+ | _k.do F(¢.1,)DG
(m-v)
e Ambient and diffuse terms are based on Fresnel
component at normal incidence (recall their values are
independent of angle)

e Lambert term is given as before as

Iambert:maxEO, >]
|s||m]|

e Diffuse term also contains solid angle at hit point, usually
set to small value e.g. 0.0001

Fresnel Term, F

Required that k, + k. = 1
For spec, we need F(¢, 7))
Usually, F(0, n) is available from tables (Terloukian)
Inserting ¢ =0, c = 1 in expression for F
==
(7+1)°
And
1 F
77—1_\/?0
So, use tabulated F(0, 7) values to calculate 7

Then use calculated 77in original equation for F

Some Fresnel Values, F(0)

* Atincident angle O
Material ____________|Fresnel Value (RGB)

Water 0.02, 0.02, 0.02
Plastic 0.05, 0.05, 0.05
Glass 0.08, 0.08, 0.08
Diamond 0.17,0.17,0.17
Copper 0.95, 0.64, 0.54
Aluminum 0.91, 0.92,0.92

* Schlick approximation to get arbitrary F

F(8)=F(0)+(1-F(0))(1-cos@)’

Final Words

e Oren-Nayar — Lambertian not specular

e Aishikhminn-Shirley — Grooves not v-shaped.
Other Shapes

e BRDF viewer
e Microfacet generator

.| [BY Options

BV BRDF Viewer

Viewers

~ 2D slices # Lit3phere

+ 3D view ~ Lit Plane

4| »| BRDF Parameter panel

[Lo1s [—{T# |

Surface roughness m

EI, | [-0za] (=
Real part Imaginary Fart
Inclex of Refraction

[[oso |

Specular reflectivity

Il i I
[Lo4 | L |
Diffuse reflectivity

This is the Cook-Torrance—Sparrow BRDF, using a
Beckmann microfacet distribution function, Blinns
geometric shadowing term, and Fresnel reflection

The parameters are the surface roughtess m{as used
in the Beckmann distribution), the index of refraction,
ahd the diffuse and specular reflectivities.

4| % | BRDF Parameter panel

[_oos [~T |

Surface roughness in & direction

I ' T i |
[0z | It |

Sutface roughness in Y direction

[Loos [=(T¢ |

Specular reflectivity

Il T I
[Loan | L |
Diffuse reflectivity

Orientation

This is Greg Ward's Elliptical Gaussian BROF.

It is predicted by a simple, but physically correct,
rough -surface madel, assuming different surface
roughness along the & and ¥ directions. Shadowing,
razsking and Fresnel reflection are not included.

Options
B Hew Window
Tufultiply by

~ Logarithin |~ cos(theta in) ~r cog(thetain) * cos(theta out)
~w cos(theta out) ~ cos(thetain) + cos(theta out) Quit

[<[%|bv [0f: (Ward sx=0.05, 5y=0.26, rs=0.05, rd=0.40) rotated by +000

BRDF Evolution

e BRDFs have evolved historically
e 1970’s: Empirical models
e Phong’s illumination model
e 1980s:
e Physically based models
e Microfacet models (e.g. Cook Torrance model)
e 1990’s

e Physically-based appearance models of specific effects (materials,
weathering, dust, etc)

e Early 2000’s

e Measurement & acquisition of static materials/lights (wood,
translucence, etc)

e Late 2000’s
e Measurement & acquisition of time-varying BRDFs (ripening, etc)

Measuring BRDFs

Source Driver Hoop

Light Source

c '-— Sample Area

*s w-,_,.,__,-\ Rotating Annuli

--.‘ ‘

Reflectance Detector =——,

| p———— # -1 omm = mAmmw.irw o4

Transmittance Detector

Murray-Coleman and Smith Gonioreflectometer. (Copied and Modified from [Ward92]).

Measured BRDF Samples

e Mitsubishi Electric Research Lab (MERL)

http://www.merl.com/brdf/

e Wojciech Matusik i==ig=g===
e MIT PhD Thesis @@z a0 @®
e 100 Samples .--i...-i
P8é. 8980«
Gge.x 0. 00
wileve .U .6 _=»
Fuwuw 200
9 _Ese W06
wHBeE & @w

Time-varying BRDF

e BRDF: How different materials reflect light
e Time varying?: how reflectance changes over time

References

e Angel and Shreiner
e Hill and Kelley, chapter 8

