Computer Graphics
CS 543 — Lecture 8 (Part 1)
Hierarchical 3D Models

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Objectives

e Examine the limitations of linear modeling
Symbols and instances

e Introduce hierarchical models

Articulated models
Robots

e Introduce Tree and DAG models

Instance Transformation

e Start with unique object (a symbol)

e Each appearance of object in model is an instance
Must scale, orient, position

Defines instance transformation

Symbol-Instance Table

Can store a model by assigning number to each
symbol and storing parameters for instance
transformation

Symbol Scale Rotate Translate

Se0 8,5, |90,,6,86 dx,dy,dz

. J— —] CAJ M R

Relationships in Car Model

e Symbol-instance table does not show
relationships between parts of model
e Consider model of car
Chassis + 4 identical wheels
Two symbols

\ . \ . .
e Rate of forward motion determined by rotational

speed of wheels

Structure Through Function Calls

car(speed)

1

chassis()

wheel (right_front);
wheel (left_front);
wheel (right rear);
wheel (left _rear);

}

e Fails to show relationships well
e Look at problem using a graph

6

Graphs

e Set of nodes and edges (links)

e Edge connects a pair of nodes
Directed or undirected

e Cycle: directed path that is a loop

@
e

loop

Tree

e Graph in which each node (except the root) has
exactly one parent node

May have multiple children

Leaf or terminal node: no children
O T root node

@/g \ O— leaf node

Tree Model of Car

Chassis

Right-front Left-front Rightrear Left-rear
wheel wheel wheel wheel

Robot Arm

-

X

A

e

robot arm

E“‘(I\l

..»\(p
/- X

Z Z

parts in their own

coodinate systems

10

Articulated Models

e Robot arm is example of articulated model
e Parts connected at joints
e Can specify state of model by
giving all joint angles

11

Required Matrices

e Rotation of base: R,
Apply M = R, to base
e Translate lower arm relative to base: T,

e Rotate lower arm around joint: R,,
Apply M =R, T, R, to lower arm
e Translate upper arm relative to upperarm: T,

e Rotate upper arm around joint: R,
Apply M=R, T, R, T, Ry, t0 upper arm

12

Hierarchical Transforms

e Robot arm: Many small parts

e Attributes (position, orientation, etc) depend on

each other

AROBOT HAMMER! —_ hammer

s

«— Dbase

L,

lower arm

- C

Hierarchical Transforms

e Object dependency description using tree

structure

Root node

Base

l

Lower arm

l

Upper arm

Leaf node

l

Hammer

Object position and orientation
can be affected by its parent,
grand-parent, grand-grand-parent
... hodes

Hierarchical representation
is known as Scene Graph

Transformations

e Two ways to specify transformations:

e (1) Absolute transformation: each part of the object is
transformed independently relative to the origin

Translate the base by (5,0,0);
Translate the lower arm by (5,0,0);
Translate the upper arm by (5,0,0);

N

Relative Transformation

A better (and easier) way:

(2) Relative transformation: Specify the
transformation for each object relative to its
parent

— Step 1: Translate base and —
Its descendants by (5,0,0); —

Bl =~

Relative Transformation

Step 2: Rotate the lower arm and all its descendants
relative to the base’s local y axis by -90 degree

— N

1l

F > e
S

Relative Transformation

e Represent relative transformation using scene

graph

l

Base {-----------1 Translate (5,0,0)

-

Lower arm

l

Upper arm

l

Hammer

........... —---| Rotate (-90) about its local y

Apply all the way
down

Apply all the way
down

Hierarchical Transforms Using OpenGL

e Translate base and all its descendants by (5,0,0)

e Rotate lower arm and its descendants by -90 degree about

local y

Base

l

Lower arm

l

Upper arm

l

Hammer

ctm = Loadldentity();

... /1 setup your camera

ctm *= Translatef(5,0,0);
Draw_base();

ctm *= Rotatef(-90, 0, 1, 0);
Draw_lower _arm();

Draw_upper_arm();
Draw_hammer();

OpenGL Code for Robot

mat4 ctm;
robot_arm()
{
ctm = RotateY(theta),;
base();
ctm *= Translate(0.0, hl, 0.0);
ctm *= RotateZ(pht);
lower _arm();
ctm *= Translate(0.0, h2, 0.0);
ctm *= RotateZ(psi),;

upper_arm();

20

Humanoid Figure

T

arm arm

21

Leftupper

Torso
Hoad Leftupper Rightupper
. - arm arm

Leftlower Rightlower

Right-upper

RightHlower

Building the Model

e Can build model using simple shapes

e Access parts through functions
torso()
left _upper_arm()

e Matrices describe position of node with respect
to its parent

M,,, positions left lower leg with respect to left upper
arm

22

XX
X
o0
S
Tree with Matrices
Torso
Mh Mfua Mrua Mfuf Mruf
Head Leftupper Right-upper Leftupper Rightupper
arm arm leg leg
+ Mﬂa + Mrfa + MIH +Mrﬂ
Left-lower Rightlower Left-lower Rightlower

arm arm leg leg

23

Transformation Matrices

e There are 10 relevant matrices

24

M positions and orients entire figure through the
torso which is the root node

M, positions head with respect to torso

M as Miar Myys M, position arms and legs with
respect to torso

M. M., My, My, position lower parts of limbs with
respect to corresponding upper limbs

glPushMatrix and glPopMatrix

e Two important calls:

PushMatrix(): Save current modelview matrix in
stack

PopMatrix(): restore transform matrix to what it was
before PushMatrix()

PopMatrix and PushMatrix lllustration

in Stack

Code Modelview Matrix

glloadldentity();

gl Translatef(0.0, 0.0, —15.0);

glPushMatrix();
//Copy of M, placed on top.

glScalef(1.0, 2.0, 1.0);

glutWireCube(5.0);
//No change.

_ glPopMatrix();
//Back to before the push statement!

giTranslatef{0.0, 7.0, 0.0);

glutWireSphere(2.0, 10, 8);
//No change.

Stack

o

*M
M
M
M, *M,
M
M,
M.

i

I
1
1
1
1
M,
M,

M
ﬂv

Processing in code order

Ref: Computer Graphics
Through OpenGL by Guha

Figure 4.19: Transitions of the modelview matrix stack.

Stack-based Traversal

e Set model-view matrix to M and draw torso
e Set model-view matrix to MM, and draw head
e For left-upper arm need MM,,,and so on

e Rather than recomputing MM, from scratch
or using an inverse matrix, we can use the
matrix stack to store M and other matrices as
we traverse the tree

27

Traversal Code

figure() { save present model-view matrix

PushMatrix() - | |
torso(): /update model-view matrix for head
Rotate (..); o | |
head(); - recover original model-view matrix
Popl\/latrn_(() ; ~——— save it again
PushMatrix();

Translate(.); _____ update model-view matrix
Rotate(..); for left upper arm
leTt_upper_arm(); recover and save original
PopMatrix(); —

model-view matrix again

ZSPUShMatriXO e rest of code

e00
e00
o0
O
Scene Graph
Scene
|
| |
Separator Separator
| |
| | | | |
Color Translate Object 1 Translate Object 3
| | |
Rotate Translate Rotate

29

|
Obiject 2

Preorder Traversal

PushAttrib
PushMatrix
Color
Translate
Rotate
Objectl
Translate
Object?
PopMatrix
PopAttrib

30

Inventor and Java3D

e |Inventor and Java3D provide a scene graph API
e Scene graphs can also be described by a file (text or
binary)
Implementation independent way of transporting
scenes
Supported by scene graph APlIs
e However, primitives supported should match
capabilities of graphics systems

Hence most scene graph APls are built on top of
OpenGL or DirectX (for PCs)

31

VRML

e Want to have a scene graph that can be used
over the World Wide Web

e Need links to other sites to support distributed
data bases

e Virtual Reality Markup Language
Based on Inventor data base
Implemented with OpenGL

32

References

e Angel and Shreiner, Interactive Computer Graphics
(6th edition), Chapter 8

