Computer Graphics (CS 543)
Lecture 9: Clipping

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Primitive Assembly

e Transformations and projections are per-vertex
operations

e Primitive assembly: At end of geometric pipeline,
individual vertices are assembled back into primitives

e E.g.v6,v7 and v8 grouped back into triangle

v3 v4

Clipping

e Subsequent operations necessary before display
occur per-primitive

e Clipping: Remove primitives outside view frustum

/H /F D A
L B
G/A/ E/ C/ 4/&\

Clipping lines Clipping polygons

Rasterization

e Determine which pixels that primitives map to
e Fragment generation
e Rasterization or scan conversion

Fragment Processing

e Some tasks deferred until fragment processing

Hidden Surface Removal

Antialiasing

Geometric '

Modeling ——» .~ — Rasterization —m»
processing

Fragment

..J_>

| processing | |

Clipping
e 2D against clipping window
e 3D against clipping volume
e Easy for line segments polygons
e Hard for curves and text
e Convert to lines and polygons first

—

© ke b
¥ N)

Clipping 2D Line Segments

e Brute force approach: compute intersections
with all sides of clipping window

e Inefficient: one division per intersection

A

2D Clipping: Cohen-Sutherland Algorithm

e Idea: eliminate as many cases as possible without
computing intersections

e Start with four lines that determine the sides of the
clipping window

y - ymax O

X = Xmin O X = Xmax

y= ymin

Clipping Points

(xmax, ymax)

(xmin, ymin)

Determine whether a point (x,y) is
inside or outside of the world
window?

If (xmin <= x <= xmax)
and (ymin <=y <= ymax)

then the point (x,y) is inside
else the point is outside

Clipping Lines

3 cases:
Case 1: All of line in
Case 2: All of line out
Case 3: Part in, part out

Clipping Lines: Trivial Accept

(Xmax, Ymax)

(Xmin, Ymin)

Case 1: All of line in
Test line endpoints:

Xmin <= P1.x, P2.x <= Xmax and
Ymin <= P1.y, P2.y <= Ymax

Note: simply comparing x,y values of
endpoints to x,y values of rectangle

Result: trivially accept.
Draw line in completely

Clipping Lines: Trivial Reject

Case 2: All of line out
Test line endpoints:

=" pl.x, p2.x <= Xmin OR
= pl.x, p2.x >= Xmax OR
=" pl.y, p2.y <=ymin OR
= pl.y, p2.y >= ymax

Note: simply comparing x,y values of
endpoints to x,y values of
rectangle

Result: trivially reject.
Don’t draw line in

Clipping Lines: Non-Trivial Cases

/ e
dely
yayds

Case 3: Part in, part out

Two variations:
One point in, other out
Both points out, but part of line cuts
through viewport

Need to find inside segments

Use similar triangles to figure out length
of inside segments

Clipping Lines: Calculation example

/
Y

d e

dely N delx

<«

dely

If chopping window has

(left, right, bottom, top) = (30, 220, 50, 240),
what happens when the following lines are
chopped?

(a) p1 = (40,140), p2 = (100, 200)

(b) p1 = (20,10), p2 = (20, 200)

(c) p1 = (100,180), p2 = (200, 250)

Cohen-Sutherland pseudocode (Hill)

int clipSegment(Point2& pl, Point2& p2, RealRect W)
{
do{
if(trivial accept) return 1; // whole line survives
if(trivial reject) return 0; // no portion survives
// now chop
1IT(pl 1s outside)
// Tind surviving segment
{
1IT(pl 1s to the left) chop against left edge
else 1T(pl 1s to the right) chop against right edge
else 1T(pl 1s below) chop against the bottom edge
else 1T(pl 1s above) chop against the top edge

Cohen-Sutherland pseudocode (Hill) | :

else // p2 i1s outside
// find surviving segment
{
1IT(p2 1s to the left) chop against left edge

else 1T (p2 1s to right) chop against right edge
else 1T (p2 i1s below) chop against the bottom edge
else 1T (p2 i1s above) chop against the top edge

+

Jwhile(l);
+

Using Outcodes to Speed
Up Comparisons

e For each endpoint, define an outcode

bob;b,05
1001 | 1000 | 1010
=11 I Y = Ymax
b, : 1 !f Y>>V ., 0 otherw_lse 0001 | 0000 | 0010
b, =1 !f Y <Ymin 0 otherW|_se y=y .
b, =1if X>X_,,, 0 otherwise 0101 | OT00 | 0110
by =1 1f X <X, O Otherwise K= R XK

e Outcodes divide space into 9 regions

Cohen Sutherland in 3D :

e Use 6-bit outcodes
e When needed, clip line segment against planes

(’(2:/)/2: Z2)
Y
f i |
(X] ' YI ' Z])-—'7"‘ (chx' ymox' Zmox)

Liang-Barsky 3D Clipping

Want to clip edge-by-edge of an object against CVV
Now describe a version embellished by Jim Blinn
Problem:

Two points, A = (AXx, Ay, Az, Aw) and C = (Cx, Cy, Cz, Cw), in homogeneous
coordinates

If segment intersects with CVV, need to compute intersection point I-
=(Ix,ly,1z,lw)
a)

y b)
CV\ V- » (

eoo
o0
o
Determining if point is inside CVV
Determine whether a point
y=1 (x,y,2) is inside or outside CVV?
®
® Point (x,y,z) is inside CVV
¢ if (-1 <= x <= 1)
y=-1 and (-1 <=y<=1)
and (-1<=z<=1)
X =-1 xX=1

else the point is outside CVV

CVV == 6 infinite planes (x=-1,1; y=-1,1; z=-1,1)

Determining if point is inside CVV

What if point is in homogeneous
coordinates?

Point specified as (x,y,z,w)
- Use scaled version of x,y,z!

Point (X,y,z) is inside CVV

yw =1
o
o
o
y/w= -1
xw = -1 xXw= 1

if (-l<=x/w<=1)
and (-1 <=y/w<=1)
and (-1 <=1z/w<=1)

else the point is outside CVV

Determining if point is inside CVV

yw =1

Consider plane x = 1, point A =
(Ax,Ay,Az,Aw) is inside if

y/w= -1

Ax/Aw < 1
=> Aw —-Ax>0
or w—x>0

x/w = -1

Point A = (Ax,Ay,Az,Aw) plane x
x/w=1 — -1 if

Ax/Aw > -1
=> Aw + Ax>0
or w+x>0

Determining if point is inside CVV

So, point is
inside (right of) plane x=-1 if w+x >0
inside (left of) plane x=1 if w- x>0

-1 1

Point (0.5, 0.2, 0.7) inside planes (x =-1,1) because
-1<=05<=1

Ifw =10, (0.5,0.2,0.7) =(5, 2, 7, 10)

Use scaled version, point is inside because — 1 <=5/10<=1
Totestifinsidex=-1, w+x= 10+5=15 >0
Totestifinsidex=1, w-x= 10 -5=5 >0

3D Clipping

Notation (Aw +Ax) = w + X, boundary coordinates for 6 planes as:

Boundary Homogenous | Clip plane | Example
coordinate (BC) coordinate (5,2,7,10)
BCO W—+X X=-1 15

BC1 W-X x=1 5

BC2 w-+y y=-1 12

BC3 wW-y y=1 8

BC4 W—+z z=-1 17

BC5 wW-Z z=1 3

*Trivial accept: 12 BCs (6 for pt. A, 6 for pt. C) are positive

*Trivial reject: Both endpoints outside of same plane

Edges as Parametric Equations

e Implicit form

F(x,y)=0

e Parametric forms:
points specified based on single parameter value
Typical parameter: time t

P(t) = P, + (P — P,)*t 0<t<1

e Some algorithms work in parametric form
Clipping: exclude line segment ranges
Animation: Interpolate between endpoints by varying t

e Represent each edge parametrically as A + (C— A)t
e Intepretation: a point is traveling such that:

at time t=0, point at A

at time t=1, point at C

Inside/outside?

Test against 6 walls

If BCs have opposite signs = edge hits plane at time t_hit

Define: “entering” = as t increases, outside to inside

l.e. if pt. Alis outside, C is inside

Define “leaving”: as t increases, inside to outside (A inside, C

outside)

t_in / C
A —

t_out

c—

/A

Calculating hit time (t_hit) e

How to calculate t_hit?

Represent an edge t as:
Edge(t) = ((Ax+ (Cx — Ax)t, (Ay + (Cy — Ay)t, (Az + (Cz — A2)t, (Aw + (Cw — Aw)t)

Ax + (Cx — Ax)t 1

E.g. lfx=1, =
o7 Aw + (Cw— Aw)t

Solving for t above,

. Aw — AX
(Aw— Ax) — (Cw—Cx)

Candidate Interval

If not trivial accept/reject, then clip

Define Candidate Interval (Cl) as time interval during which edge
might still be inside CVV. l.e.Cl =t_intot_out

Initialize ClI to [0,1]

0 Cl 1
Tt

t in t out

Conversely: values of t outside Cl = edge is outside CVV

Shortening Candidate Interval

Algorithm:
Test for trivial accept/reject (stop if either occurs)
Set Cl to [0,1]
For each of 6 planes:
Find hit time t_hit
Ift_in, new t_in = max(t_in,t_hit)
If t out, new t_out = min(t_out, t_hit)

If t_in >t _out => exit (no valid intersections)

Note: seeking smallest valid Cl without t_in crossing t _out

Shortening Candidate Interval :

Example to illustrate search for t_in, t _out

Note: CVV is different shape. This is just example

@2
@)
. _ L .
//’/ R s A Line test fin -
Y s \ ~ L4 0 0 0.83
1 | = / _
@] /—//’r'-ﬁ/' ra | intersects L ! 0 0.66
el S | @-4.7
—C /@66 | “ S) 0 0.66

@.83 e 3 0 0.66

2 4 0.2 0.66

intersects L, ~ —ou_____~ S 028 0.66
@3.4 7

Calculate choppped A and C °

e Ifvalidt in, t out, calculate adjusted edge endpoints A, C as

e A chop=A+t_in(C—-A) (calculate for Ax,Ay, Az)
e C chop=A+t out(C—A) (calculate for Cx,Cy,Cz)

3D Clipping Implementation

e Function clipEdge()
e Input: two points A and C (in homogenous coordinates)
e Output:
e 0, if no part of line AC lies in CVV
e 1, otherwise
e Also returns clipped A and C
e Store 6 BCs for A, 6 for C

Store BCs as Outcodes

e Use outcodes to track in/out
Number walls 1... 6 (or O.. 5)
Bit i of A’s outcode =0 if A is inside ith wall
1 otherwise
e Example: outcode for point outside walls 1, 2, 5

Wall no. 0] 1 2 3 4 5
OutCode |0 1 1 0] 0 1

Trivial Accept/Reject using Outcodes

e Trivial accept: inside (not outside) all walls

wall no. |© 1 2 3 4 o
A Outcode | O 0] 0] O 0 0]

C OutCode |0 0 0] 0] 0] 0

Logical bitwise test: A | C ==

e Trivial reject: point outside same wall. Example Both A and C outside wall 1

wall no. |© 1 2 3 4 S
A Outcode | O 1 0] 0] 1 0

C OutCode |0 1 1 0] 0] 0

Logical bitwise test: A&C!'=0

3D Clipping Implementation

e Compute BCs for A,C store as outcodes
e Test A, C outcodes for trivial accept
e Test A,C outcodes for trivial reject
e |f not trivial accept/reject:
Compute tHit
Update t_in, t out
If t_in >t _out, early exit

3D Clipping Pseudocode

int clipEdge(Point4& A, Point4& C)

{
double tin = 0.0, tOut = 1.0, tHit;

double aBC[6], cBC[6];
int aOutcode = 0, cOutcode = 0;

..... find BCs for A and C
..... form outcodes for A and C

if((aOutCode & cOutcode) != 0) // trivial reject
return O;

if((aOutCode | cOutcode) == 0) // trivial accept
return 1;

3D Clipping Pseudocode

for(i=0;i<6;i++) // clip against each plane

{
if(cBC[i] < 0) // exits: C is outside

{
tHit = aBC[i]/(aBC[i] — cBC[l]);
tOut = MIN(tOut, tHit);
}
else if(aBC[i] < 0) // enters: A is outside
{
tHit = aBC[i]/(aBC[i] — cBC[i]);
tin = MAX(tIn, tHit);
}

if(tIn > tOut) return 0; // Cl is empty: early out

3D Clipping Pseudocode

Point4 tmp; // stores homogeneous coordinates
If(aOutcode !'=0) // A is out: tin has changed
{

tmp.x = A.x +tIn * (C.x - A.x);

// do same fory, z, and w components

}
If(cOutcode !'=0) // Cis out: tOut has changed

{
C.x = A.x + tOut * (C.x — A.x);

// do same for y, zand w components

}

A =tmp;

Return 1; // some of the edges lie inside CVV
}

References

e Angel and Shreiner, Interactive Computer Graphics,
6th edition

e Hill and Kelley, Computer Graphics using OpenGL, 3"
edition

