Computer Graphics (CS 5431
Lecture 9: Clipping, Viewpor
Transformation & Hidden Surface Removal|

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Polygon Clipping

e Not as simple as line segment clipping

Clipping a line segment yields at most one line
segment

Clipping a polygon can yield multiple polygons
- .

e However, clipping a convex polygon can yield at
most one other polygon

2

Tessellation and Convexity

e One strategy is to replace nonconvex (concave)
polygons with a set of triangular polygons (a
tessellation)

e Also makes fill easier
e Tessellation code in GLU library

Clipping as a Black Box

e Can consider line segment clipping as a process
that takes in two vertices and produces either no
vertices or the vertices of a clipped line segment

Pipeline Clipping of Line ssee
Segments 4+

e Clipping against each side of window is
independent of other sides

e Can use four independent clippers in a pipeline

. (Xp)’])

(X5u)’5)

(xz, 72)

(X]:)/]) (x3:)/3) (X3:)/3) (X3:)’3) (X3, Y3)

(ng)*’2) (ng YQ) (X5: Y5) (X5/ Y5) (X4: YA}
—— > Top ———® Bottom —————® Right ———®» leff ———m

Pipeline Clipping of Polygons

i Top

—b.

AR

—».

E— -
clip

A

Left
clip

Bottom
clip

.~ M

Right
clip

e Three dimensions: add front and back clippers

e Strategy used in SGI Geometry Engine

e Small increase in latency

Bounding Boxes

e Rather than doing clipping on a complex polygon, we
can use an axis-aligned bounding box or extent

Smallest rectangle alighed with axes that encloses the
polygon
Simple to compute: max and min of x and y

— —— ——— —— — —

-

- — —— — — — —

Bounding boxes

Can usually determine accept/reject based only on
bounding box

requires detailed

| / clipping

Clipping and Hidden Surface Removal

e Clipping has much in common with hidden-
surface removal

e |In both cases, we are trying to remove objects
that are not visible to the camera

e Often we can use visibility or occlusion testing
early in the process to eliminate as many
polygons as possible before going through the
entire pipeline

Clipping Polygons

e Cohen-Sutherland and Liang-Barsky clip line
segments against each window in turn

e Polygons can be fragmented into several polygons
during clipping

e May need to add edges

e Need more sophisticated algorithms to handle
polygons:

Sutherland-Hodgman: any subject polygon against a
convex clip polygon (or window)

Weiler-Atherton: Both subject polygon and clip
polygon can be concave

Sutherland-Hodgman Clipping

e Consider Subject polygon, S to be clipped against a
clip polygon, C

e Clip each edge of S against C to get clipped polygon
e Sisan ordered list of verticesabcdefg

a N b
c .\
d/ f C

Sutherland-Hodgman Clipping

e Traverse S vertex list edge by edge

® i.e. successive vertex pairs make up edges
e E.g.ab, bc, de, ... etc are edges

e Each edge has first point s and endpoint p

d/

b

Sutherland-Hodgman Clipping

e For each edge of S, output to new vertex depends on
whether s or/and p are inside or outside C

e 4 possible cases:

inside | OUtS'ge

inside outside

0]
FITTTTS
FFFrrrrs,

Case B: s inside, p outside:
Case A: Both s and p are inside: Find intersection i,

output p output |

Sutherland-Hodgman Clipping °

e And....

inside outside inside outside

Case D: s outside, p inside:
Casg C: Both s and p outside: output Find intersection i.
nothing

output i and then p

Sutherland-Hodgman Clipping

e Now, let’s work through example
e Treat each edge of C as infinite plane to clip against

e Start with edge that goes frt())m last vertex to first (e.g ga)
a

: \>g
/ rd av____i

/ f] 1\
d abcdefg C e >p
= |

12cdefg

ipping

[T

3145defb

12cdefg

Sutherland-Hodgman (I
e Then chop against right edge

Sutherland-Hodgman Clipping

e Then chop against bottom edge

i

d
3145defb6

31478¢e9 106

000
L X
o
Sutherland-Hodgman Clipping
e Finally, clip against left edge
4
1
31478e9 106 4
= 7

314711 12e 9 106

Weiler-Atherton Clipping Algorithm

e Sutherland-Hodgman required at least 1 convex polygon
e Weiler-Atherton can deal with 2 concave polygons

e Searches perimeter of SUBJ polygon searching for borders
that enclose a clipped filled region

e Finds multiple separate unconnected regions ey

Weiler-Atherton Clipping Algorithm

Follow detours along CLIP boundary whenever polygon edge
crosses to outside of boundary

Example: SUBJ ={a,b,c,d} CLIP ={A,B,C,D}
Order: clockwise, interior to right

First find all intersections of 2 polygons ,,ffa
Example has 6 int. A
{11213141516}

Weiler-Atherton Clipping Algorithm

e Start at g, traverse SUBJ in forward direction till first entering
intersection (SUBJ moving outside-inside of CLIP) is found

e Record this intersection (1) to new vertex list
e Traverse along SUBI till next intersection (2)

e Turn away from SUBJ at 2 a
e Now follow CLIP in forward direction ,,'j”
e Jump between polygons moving in SUBJ —.. -~ - //’

forward direction till first
intersection (1) is found again
e Yields: {1, b, 2} d -~

Weiler-Atherton Clipping Algorithm

Start again, checking for next entering intersection of SUBJ
Intersection (3) is found

Repeat process

Jump from SUBJ to CLIP at next intersection (4)

Polygon {3,4,5,6} is found

Further checks show no new entering intersections -

Weiler-Atherton Clipping Algorithm

Can be implemented using 2 simple lists

List all ordered vertices and intersections of SUBJ and CLIP
SUBJ_LIST:a,1,b,2,¢,3,4,d,5,6
CLIP_LIST:A,6,3,2,B,1,C,D, 4,5

Weiler-Atherton Clipping Algorithm

restart
start a —1 b 2 c —3 4 d 5 6

SUBJ_LIST:

CLIP_LIST:

visited

Viewport Transformation

After clipping, do viewport transformation

We have used glViewport(x,y, wid, ht) before

Use again here!!

glViewport shifts x, y to screen coordinates

Also maps pseudo-depth z from range [-1,1] to [0,1]

Pseudo-depth stored in depth buffer, used for Depth testing (Will discuss later)

projection
matrix

b e

—3 VM > P P cip > V, <

\

modelview
matrix

viewport
matrix

Hidden surface Removal

e Drawing polygonal faces on screen consumes CPU cycles
e We cannot see every surface in scene

e To save time, draw only surfaces we see

e Surfaces we cannot see and their elimination methods:

Occluded surfaces: hidden surface removal (visibility)
Back faces: back face culling
Faces outside view volume: viewing frustrum culling

e Definitions:

Object space techniques: applied before vertices are
mapped to pixels

Image space techniques: applied after vertices have been
rasterized

Visibility (hidden surface removal) |

e A correct rendering requires correct visibility
calculations

e Correct visibility — when multiple opaque polygons
cover the same screen space, only the closest one is
visible (remove the other hidden surfaces)

wrong visibility Correct visibility

Hidden Surface Removal

e Object-space approach: use pairwise testing
between polygons (objects)

N —

N/ N/

partially obscuring can draw independently

B

e Worst case complexity O(n?) for n polygons

Painter’s Algorithm

e Render polygons a back to front order so that
polygons behind others are simply painted over

nat

B behind A as seen by viewer Fill B then A

Depth Sort

e Requires ordering of polygons first
O(n log n) calculation for ordering

Not every polygon is either in front or behind all other

polygons
A

e Order polygons and deal with
easy cases first, harder later

Distance from COP

:

i I l.zmin
Polygons sorted by A E p

distance from COP Palygans g

Easy Cases

e A lies behind all other polygons

A

tance from COP

Can render 3

é’iED

Zmi
min
C

-

Polygons

e Polygons overlap in z but not in either x ory
Can render independently

4 A
/o
A d

Hard Cases 3t
/B
.

cyclic overlap
Overlap in all directions

but can one is fully on
one side of the other

penetration

Back Face Culling

e Back faces: faces of opaque object which are
“pointing away” from viewer

e Back face culling — remove back faces
(supported by OpenGL)

Back face
ﬁ‘/

e How to detect back faces?

Back Face Culling

e If we find backface, do not draw, save rendering resources
e There must be other forward face(s) closer to eye

e Fisface of object we want to test if backface

e PisapointonF

e Form view vector, V as (eye — P)

e NisnormaltofaceF

| . &

V

Backface test: F is backface if N.V < O why??

Back Face Culling: Draw mesh front faces

void drawFrontFaces()

{
for(int f = 0;f < numFaces; f++)
{
if(isBackFace(f,) continue;
gIDrawArrays(GL_POLYGON, 0, N);
}

Note: In OpenGL we can simply enable culling
but may not work correctly if we have nonconvex objects

Image Space Approach

e Look at each projector (nm for an n X m frame
buffer) and find closest of Kk polygons

e Complexity O(nmk)
e Ray tracing
e Z-buffer

VN,
Yy

COP

[/ /S

OpenGL HSR Commands

Primarily three commands to do HSR

glutinitDisplayMode(GLUT_DEPTH | GLUT _RGB)
instructs openGL to create depth buffer

glEnable(GL_DEPTH_TEST) enables depth testing

glClear(GL_COLOR_BUFFER_BIT |
GL_DEPTH BUFFER_BIT) initializes the depth buffer
every time we draw a new picture

OpenGL - Image Space Approach

" Determine which of the n objects is visible to
each pixel on the image plane
" Paint pixel with color of closest object

for (each pixel in the image) {
determine the object closest to the pixel
draw the pixel using the object’s color

¥

Image Space Approach — Z-buffer

e Method used in most of graphics hardware
(and thus OpenGL): Z-buffer (or depth buffer)

algorithm
e Requires lots of memory
e Recall: after projection transformation, in

viewport transformation

X,y used to draw screen image, mapped to
viewport

z component is mapped to pseudo-depth with
range [0,1]

e Objects/polygons are made up of vertices

P B I [P IS T PR SRS S T

Image Space Approach — Z-buffer

e Basic Z-buffer idea:

rasterize every input polygon

For every pixel in the polygon interior, calculate its
corresponding z value (by interpolation)

Track depth values of closest polygon (smallest z)
so far

Paint the pixel with the color of the polygon whose
z value is the closest to the eye.

Z (depth) buffer algorithm

e How to choose the polygon that has the
closet Z for a given pixel?

e Example: eye atz =0, farther objects have
increasingly positive values, between 0 and 1
Initialize (clear) every pixel in the z buffer to 1.0
Track polygon z’s.

As we rasterize polygons, check to see if
polygon’s z through this pixel is less than current
minimum z through this pixel

Run the following loop:

Z (depth) Buffer Algorithm

For each polygon {
for each pixel (x,y) inside the polygon projection area {
if (z_polygon_pixel(x,y) < depth_buffer(x,y)) {
depth_buffer(x,y) = z_polygon_pixel(x,y);

color_buffer(x,y) = polygon color at (X,y)

¥
¥
¥

Note: know depths at vertices. Interpolate for interior
z_polygon_pixel(x, y) depths

Z buffer example

Correct Final image

0.5

| 2=0.3

eye

Top View

Z buffer example

Step 1: Initialize the depth buffer

1.0 | 1.0 1.0 | 1.0
1.0} 10| 10| 1.0
1.0| 10| 10| 1.0
1.0| 10| 10| 1.0

Z buffer example °

Step 2: Draw the blue polygon (assuming the OpenGL
program draws blue polyon first — the order does
not affect the final result any way).

10 | ' 7=03
1.0 T

1.0 |

1.0 eye

Z buffer example

Step 3: Draw the yellow polygon

1.0

1.0

1.0

1.0

0.3

1.0

0.3

1.0

1.0

1.0

eye

z-buffer drawback: wastes resources by rendering a face and then

drawing over it

Z-Buffer Depth Compression

Recall that we chose parameters a and b to map z from range
[near, far] to pseudodepth range[0,1]

This mapping is almost linear close to eye
Non-linear further from eye, approaches asymptote
Also limited number of bits

Thus, two z values close to far plane may map to same
pseudodepth: Errors!!

— __F+N

4 a=—Fy

Actual z aP7+b b _ 2F
—P7z o F—N

|
=
__Z
T
I
N

View-Frustum Culling

Remove objects that are outside the viewing frustum
Done by 3D clipping algorithm (e.g. Liang-Barsky)

Ray Tracing

Ray tracing is another example of image space

method

Ray tracing: Cast a ray from eye through each pixel to

the world.

Question: what does eye see in direction looking

through a given pixel?

>< v
%<<><

VA

Will discuss more later

Scan-Line Algorithm s

e Can combine shading and hsr through scan line
algorithm

scan line i: no need for depth
iInformation, can only be in no
or one polygon

scan line J: need depth
Information only when in
more than one polygon

{

00
Combined z-buffer and +4-
Gouraud Shading (Hill)

for(int y = ybott; y <= ytop; y++) // for each scan line
for(each polygon){
find xleft and xright
find dleft and dright, and dinc
find colorleft and colorright, and colorinc
for(int x = xleft, c = colorleft, d = dleft; x <= xright;
X++, c+= colorinc, d+= dinc)
- 1 color3
if(d < dDlly]) ytop
{ color
put c into the pixel at (x, y) y4 color2
d[x][y] = d; // update closest depth
1 ys
ybott
colorl _ .
xleft xright

Visibility Testing

e In many realtime applications, such as games, we
want to eliminate as many objects as possible
within the application

Reduce burden on pipeline
Reduce traffic on bus
e Partition space with Binary Spatial Partition (BSP)

Tree

Simple Example

\

B .‘\ \ ; D \.\\ /
~ 7 | \ /
\‘ \\ E / IJI ,.,«—-"""'/\;\ ‘J.“J \
| A ~ L= / F
| / \‘ - \/ / |

/ - | :
/L' J ~ A =
[\

consider 6 parallel polygons

A

F
B E

top view

The plane of A separates B and C from D, E and F

BSP Tree

e Can continue recursively
Plane of C separates B from A
Plane of D separates E and F

e Can put this information in a BSP tree
Use for visibility and occlusion testing

References

e Angel and Shreiner, Interactive Computer Graphics,
6th edition

e Hill and Kelley, Computer Graphics using OpenGL, 3"
edition

