Computer Graphics (CS 543)
Lecture 9: Rasterization and
Antialiasing

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Rasterization

e Rasterization (scan conversion)

Determine which pixels that are inside primitive
specified by a set of vertices

Produces a set of fragments

Fragments have a location (pixel location) and other
attributes such color and texture coordinates that are
determined by interpolating values at vertices

e Pixel colors determined later using color, texture,

and other vertex properties

Rasterization

e Implemented by graphics hardware

e Rasterization algorithms
e Lines
e Circles
e Triangles
e Polygons

&
A
4

Line drawing algorithm

e Programmer specifies (x,y) values of end pixels

e Need algorithm to figure out which intermediate pixels
are on line path

e Pixel (x,y) values constrained to integer values
e Actual computed intermediate line values may be floats
e Rounding may be required. E.g. computed point
(10.48, 20.51) rounded to (10, 21)
e Rounded pixel value is off actual line path (jaggy!!)
e Sloped lines end up having jaggies
e Vertical, horizontal lines, no jaggies

Line Drawing Algorithm

P NWS~OOTO N O

.‘ //
2l
L //
-

0123 4567389 101112

Line: (3,2) -> (9,6)

Which intermediate
pixels to turn on?

Scan Conversion of Line Segments |

e Start with line segment in window coordinates
with integer values for endpoints

e Assume implementation hasawrite pixel
function

(XQ»‘)’Q)
y=mx+h \\\ﬂ//
/ 4y
m = ﬂ ,/
AX /(le ?’1) !
< A.X >

Line Drawing Algorithm

e Slope-intercept line equation
yv=mx+Db
Given two end points (x0,y0), (x1, y1), how to
compute m and b?

_dy yl-y0
Cdx x1—x0
(x1,y1)
dy
(x0,y0)

m b=y0-m=*x0

Line Drawing Algorithm

e Numerical example of finding slope m:
(Ax, Ay) = (23, 41), (Bx, By) = (125, 96)

_By-Ay 96-41 55

— — = =0.5392
Bx—Ax 125-23 102

m

Digital Differential Analyzer (DDA):
Line Drawing Algorithm

Walk through the line, starting at (x0,y0)
Constrain X, y increments to values in [0,1] range
Case a: x Is incrementing faster (im < 1)

Step in Xx=1 increments, compute and round y
Case b: y is incrementing faster (m > 1)

Step in y=1 increments, compute and round X

m=>1

(x0,y0)

v

DDA Line Drawing Algorithm (Case a: m < 1)

yk+1 — yk +m

N]

“l‘l

L

(x0, y0)

X = x0 y=y0
lHluminate pixel (x, round(y))

Xx=x0+1 y=y0o+1*m
llluminate pixel (x, round(y))
X=x+1 y=y+1l*m

lHluminate pixel (x, round(y))

Until x == x1

DDA Line Drawing Algorithm (Case b: m > 1)

1
Xeyg = X T E /(xl,yl)
Y
L]
N
\ (x0,y0)

00
' Y X X
(Y XX
00
o0
o

X = X0 y =y0

llluminate pixel (round(x), y)

y=y0+1 X=x0+1%*1/m

llluminate pixel (round(x), y)
y — y + 1 X=X+1 /m

Illuminate pixel (round(x), y)

Untily ==yl

DDA Line Drawing Algorithm Pseudocode

compute m;
it m<1:
{
float y = y0; // initial value
for(int x = X0;X <= X1; X++, y += m)
setPixel(x, round(y)):;

}
else // m > 1
{
float x = x0; // initial value

for(int y = y0;y <= yl; y++, X += 1/m)
setPixel(round(xX), Yy):;
+
e Note: setPixel (X, Yy) writes current color into pixel in column x and row
y in frame buffer

Line Drawing Algorithm Drawbacks

e DDA is the simplest line drawing algorithm

Not very efficient
Round operation is expensive

e Optimized algorithms typically used.

Integer DDA
E.g.Bresenham algorithm (Hill)

e Bresenham algorithm
Incremental algorithm: current value uses previous value
Integers only: avoid floating point arithmetic

Several versions of algorithm: we’ll describe midpoint
version of algorithm

References

e Angel and Shreiner, Interactive Computer Graphics,
6th edition

e Hill and Kelley, Computer Graphics using OpenGL, 3"
edition, Chapter 9

