Computer Graphics (CS 543)
Lecture 11 (Part 1):
Ray Tracing (Part 3)

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Recall: Where are we?

Define the objects and light sources 1In the scene
Set up the camera
for(int r = 0; r < nRows; r+= blockSize){
for(int ¢ = 0; ¢ < nCols; c+= blockSize){
1. Build the rc-th ray
. Find all object intersections with rc-th ray
Identify closest object intersection
. Compute the “hit point” where the ray hits the
object, and normal vector at that point
5. Find color (clr) of light to eye along ray
color_rect(r, g, b), r, c, blockSize);

B WO

Recall: Find Object Intersections
with rc-th ray

e Much of work in ray tracing lies in finding intersections with
generic objects

e Break into two parts
Deal with untransformed, generic (dimension 1) shape
Then embellish to deal with transformed shape

e Ray generic object intersection best found by using implicit
form of each shape. E.g. generic sphere is

F(x,y,2)=x"+y°+2z° -1

e Approach: ray r(t) hits a surface when its implicitegn =0

e So for ray with starting point S and direction ¢
r(t)=S+ct

F(S+ct,,)=0

Recall: Ray Intersection
with Generic Sphere

e Generic sphere has form
X°+y°+2°=1
X°+y°+2°-1=0
F(x,y,2)=x"+y° +2° -1
F(P)=P| -1

e Substituting S + ctin F(P) =0, we get

|S+ct]*-1=0
CPt2+2(S-C)t+(|SF -1)=0

e This is a quadratic equation of the form At? + 2Bt + C=0
where A= |c|?, B=S.c and C=|S5/?°-1

Recall: Ray Intersection with oo
Generic Sphere

e Solving J
B B*—AC

t, =——

A A

e If discrimant B° — AC is negative, no solutions, ray
misses sphere

e If discriminant is zero, ray grazes sphere at one
point and hit time is —B/A

e If discriminant is +ve, two hit times t1 and t2 (+ve
and —ve) discriminant

What about transformed Objects

e Generic objects are untransformed:

No translation, scaling, rotation

e Real scene: generic objects instantiated, then
transformed by a composite matrix T,

e We can easily find the inverse transform T’

e Problem definition: We want to find ray intersection
with transformed object

e Easy by just simply finding the implicit form of the
transformed object

e May be tough to find implicit form of transformed object
e Hmmm... is there an easier way?

What about transformed Objects

Yes! Basic idea: if object is transformed by T, then ray—object
intersection is the same as inverse transformed ray with generic
object
Algorithm

Find T’ from initial T transform matrix of object

Inverse transform the ray to get (S + c’t)

Find intersection time, t,,, of the ray with the generic object
Use the same t,, in S + ct to identify the actual hit point

This beautiful trick greatly simplifies ray tracing

We only need to come up with code that intersects ray with
generic object

Remember that programmer does transforms anyway, so we can
easily track and get T

Dealing with Transformed Objects

e Thus we want to solve the equation

F(T(S+ct))=0

e Since transform T is linear
TS +ct)=(T'S)+ (T o)t

e Thus inverse transformed ray is

rg)=M-=

+M™*

C

X
Cy
Cz

0

t=S'+c't

Dealing with transformed Objects

e So, for each final CTM M transform matrix, we need
to calculate its inverse transform M1

e Example transform matrices and its inverse are

(1

00 2 100 -2
M:O4O4 M_1_0%0_4
0 0 4 9 _00%_%
0001 000 1

Organizing a Ray Tracer

e Need data structures to store ray, scene, camera, etc

e There are many ways to organize ray tracer

e Previously in C, declare struct

e These days, object-oriented religion?

e Friend once wrote ray tracer as java applet in Prof. Hill’s class
e We've developed camera class (HW3: slide, roll, etc)

e Now just add a raytrace method to camera class

voild Camera::raytrace(int blockSize);

Organizing a Ray Tracer

e Call camera raytrace method from display (redisplay) function

void display(void){
glClear(GL_COLOR_BUFFER _BIT); // clear the screen
cam.raytrace(blockSize); // generates NxN image
glDrawArrays(GL_TRIANGLES, 0, 6); // draws rectangle

e Thus ray tracer fires up and starts scanning pixel by pixel (or
block by block) till entire screen is ray traced

e Subtlety: we raytrace to generate texture, map texture onto
rectangle, then draw!!

Organizing a Ray Tracer

e Need Ray class with start, dir variables and methods to set them

Class Ray{

Public:
points3 start;
vec3 dir;
voild setStart(point3& p){start.x = p.x; etc..}
void setDir(Vector3& v){dir.x = v.x; etc..}
// other fields and methods

e We can now develop a basic raytrace() skeleton function

Camera raytrace() skeleton

GIfloat image[N]IM]1[3]1;

// insert other VBO, VAO, texture and rectangle setup

void Camera::raytrace(Scene& scn, int blockSize)
{

Ray theRay;

Color3 clr;

theRay.setStart(eye);

//begin ray tracing

Camera raytrace() skeleton

for(int row = 0; row < nRows; rows += blockSize)

for(int col = 0; col < nCols; cols += blockSize)

{
compute ray direction
theRay.setDir(<direction>); // set the ray’s direction
clr.set(shade(theRay)); // find the color

color_rect(clr.red, clr.green, clr.blue), row, col,
blockSize);

}
}

e shade() function does most of ray tracing work

shade() skeleton

Color3 shade(Ray& ray)

{ // return color of this ray
Color3 color; // total color to be returned
Intersection best; // data for best hit so far
Hit(ray, best); // Only sphere,. fi1ll “best” record
if(best.numHits == 0) // did ray miss all objects?

return background;

color.set(the emissive color of object);
color.add(ambient, diffuse and specular); // add contrib.
color.add(reflected and refracted components);
return color;

+
e Intersection class used to store each object’s hit information

shade() skeleton

e Intersection class used to store each object’s hit information

Class Intersection{
Public:
Int numHits; // # of hits at positive hit times
HitInfo hit[8]; //list of hits — may need more than 8 later
. various hit methods

e hitinfo stores actual hit information for each hit
e For simple convex objects (e.g. sphere) at most 2 hits
e For torus up to 4 hits

e For boolean objects, all shapes possible so no limit to number of hits

(Y X)
XX
o0
O
HitInfo() class
class HitInfo{
Public:
double hitTime; // the hit time
bool I1sEntering; // 1s the ray entering or exiting
int surface; // which surface i1s hit?
points3 hitPoint; // hit point

vec3 hitNormal; // normal at hit point
. various hit methods

e Surface applies if it is convenient to think of object as multiple
surfaces. E.g. cylinder cap, base and side are 3 different surfaces

hit() Function for Sphere

e Recall that for generic sphere, there are two hit times, t1 and t2
corresponding to the solutions

B +B2—AC
{ =

A A

e which are the solutions to the quadratic equation At + 2Bt + C=0
where A= |c|?, B=S.cand C=|S5/°-1

e Thus the hit() function for a sphere is as follows:

Bool Sphere::hit(Ray &r, Intersection inter)

{
Ray genRay; // need to make the generic ray
xfrmRay(genRay, invTransf, r);
double A, B, C

o0o
A=|c|?, B=S.c and C=|S|°-1 3
hit() Function for Sphere
A = dot3D(genRay.dir, genRay.dir);
B = dot3D(genRay.start, genRay.dir);
C = dot3D(genRay.start, genRay.start) — 1.0;
double discrim = B * B — A * C; B +B2—AC
if(discrim < 0.0) // ray misses {,=——=

A A

return false;
int num = O; // the # of hits so far
double discRoot = sqgrt(discrim);
double tl1 = (-B — discRoot)/A; // the earlier hit

e0o
eoo
o0
O
Hit() Function for Sphere
IT(tl > 0.00001) // 1s hit 1n front of the eye?
{
inter.hit[0].hitTime = tl1;
inter _hit[0].isEntering = true; t, :_E_\/BZ_AC
A A

inter_hit[0].surface = 0O;

points3 P(rayPos(genRay, tl)); // hit spot
inter.hit[0].hitPoint.set(P);
inter.hit[O0].hitNormal.set(P);

num = 1; // have a hit

000
00
| X J
o
Hit() Function for Sphere
double t2 = (-B + discRoot)/A; // the later hit
IT(t2 > 0.00001) // i1s hit 1n front of the eye?
{
inter_hit[num].hitTime = t2; B +B2—AC
inter_hit[num].hitObject = this: t, =TT A

inter_hit[num].isEntering = false;
inter._hit[num].surface = 0;
Point3 P(rayPos(genRay, t2)); // hit spot
inter_hit[num].hitPoint.set(P);
inter_hit[num].hitNormal.set(P);
num-++; // have a hit

}

inter.numHits = num;

return (num > 0); // true of false

}

Final words on Sphere hit() Function

e Function xfrmRay() inverse transforms the ray

e Test for t2 is structured such that if t1 is negative, t2 is returned
as first hit time

e rayPos converts hit time to a 3D point (x, vy, z)

Point3 rayPos(Ray &r, float t); //returns ray’s location at t
e rayPos is based on equation R =eye+dir,t,,
e We can finish off a ray tracer for emissive sphere

e Emissive?
Yes... no ambient, diffuse, specular
If object is hit, set to emissive color of sphere else set to background

Emissive shade() Function

Color3 shade(Ray& ray) // i1s hit in front of the eye?
{

Color3 color;

Intersection best;

Hit(ray, best);

iIf(best.numHits == 0) return background;

color = emissive color of sphere;

return color;

e Need hit functions for more shapes (cube, square, cylinder, etc)

e At this point, will take things out of order..
e Next, add ambient diffuse, specular
e Return later to do more intersections

Adding Ambient, Diffuse, Specular
to shade() Function

e Recall Phong’s illumination model

| =1k, + 1.k, xlambert +1_k, xphong’

e Where light vector s = Light positon — hit Point

e View vector v = -dir

Iambert:max(o, >em] phong = max| 0, hem
|s[m| lh||m|

Adding Ambient, Diffuse, Specular
to shade() Function

e his Blinn’s halfway vector givenbyh=s+v
e To handle colored lights and object surfaces, we separate the equation

| =1k, + 1.k, xlambert +1_k, xphong’

into separate R G and B parts so that

| =1_k, +1,k, xlambert+1_k_xphong’

ar tar sprtsr
f
|, = 1K, + 1Ky, xlambert + 1k, xphong
f
I, = 1Ky + 1Ky, x lambert + 1 ko, x phong

e Lambert and phong terms use transformed object normal m at hit point
e How do we get transformed normal?

Finding Normal at Hit Spot

e How do we get transformed normal?
e We set generic object normal at hit point

e E.g.in sphere hit function, set hit point normal = hit point for generic sphere,
we did

inter_hit[0].hitNormal .set(P);

e So, we have normal for generic object m’
e To get transformed object normal m, simply (see section 6.5.3)

m=M"m'

Adding Ambient, Diffuse, Specular
to shade() Function

e You specify ambient, diffuse and specular values for realistic
materials

e For more realistic look, can use carefully measure values from
McReynolds and Blythe.

e E.g. Copper parameters

ambient 0.19125 0.0735 0.0225
diffuse 0.7038 0.27048 0.0828
specular 0.256777 0.137622 0.086014 exponent 12.8

Recall: Coefficients for Real Materials

Material | Ambient Diffuse Specular Exponent, O
Kar, Kag,kab Kdr, Kdg,kdb | Ksr, Ksg,ksb
Black 0.0 0.01 0.5 32
plastic | 0.0 0.01 0.5
0.0 0.01 0.5
Brass 0.329412 0.780392 0.992157 27.8974
0.223529 0.568627 0.941176
0.027451 0.113725 0.807843
Polished | 0.23125 0.2775 0.773911 89.6
Silver 0.23125 0.2775 0.773911
0.23125 0.2775 0.773911

Figure 8.17, Hill, courtesy of McReynolds and Blythe

Adding Ambient, Diffuse, Specular
to shade() Function

e Can now define full shade function with ambient, diffuse and
specular contributions

Color3 Scene :: shade(Ray& ray) // i1s hit in front of the eye?
{
Get the first hit using getFirstHit(r, best);
Make handy copy h = best_hit[0];// data about first hit
Form hitPoint based on h.hitTime

Form v = -ray.dir; // direction to viewer
v.normalize();

Color3 color(emissive color of sphere); // start with emissive
color.add(ambient contribution); // compute ambient color

Adding Ambient, Diffuse, Specular
to shade() Function

lambert = max(O, sem j

Vector3 normal; |s||m|

// transform the generic normal to the world normal

xFfrmNormal(normal, invTransf, h_hitNormal);

normal .normalize(); // normalize it

for(each light source, L) // sum over all sources

{
if(isInShadow(..)) continue; // skip L 1f 1t’s 1n shadow
Form s = L.pos — hitPoint; // vector from hit pt to src
s.normalize();
float mDotS = s.dot(normal); // Lambert term
iIf(mDotS > 0.0){ // hit point 1s turned toward the light
Form diffuseColor = mDotS * diffuse * L.color
color.add(diffuseColor); // add the diffuse part

Adding Ambient, Diffuse, Specular

to shade() Function hem
phongzﬂnax(owh|“n|j

Form h = v + s; // the halfway vector

h.normalize();
float mDotH = h.dot(normal); // part of phong term
iIT(mDotH <= 0) continue; // no specular contribution

float phong = pow(mDotH, specularExponent);
specColor = phong * specular * L.color;
color.add(specColor);

}

return color;

isinShadow() is function to tests if point is in shadow. Implement
next!

Adding Shadows to Raytracing

e Shadows are important visual cues for humans
e Previously discussed limited shadow algorithms
e Limited due to OpenGL

e Raytracing adds shadows with little programming
effort

e So far, all hit points rendered with all shading
components (ambient, diffuse, specular, emissive)

e Now add shadows

Adding Shadows to Raytracing

e If hit point is in shadow, render using only ambient
(and emissive). Leave out specular and diffuse
e 3 possible cases

A: no other object between hit point and light source

B:another object between hit point and light source
(occlusion)

C: object blocks itself from light source (back face)

Adding Shadows

Need routine 1sInShadow() which tests to see if hit point is in
shadow

1sInShadow() returns
true if hit pointis in shadow
false otherwise

1sInShadow() spawns new ray called shadow feeler
emanating from hit point at time t=0 and reaching light source at
t=1

So, parametric equation of shadow feeleris P, + (L — P,)t

So, shadow feeler is built and each object in object list is scanned
for intersection (just like eye ray)

If any valid intersection in time range t=[0,1] isinShadow returns
true, otherwise returns false

Adding Shadows

e Note: since we made hit function general, takes ray as argument,
once we build shadow feeler, reuse hit() functions

e One more sticky point: self-shadowing!!

e How? Since shadow feeler starts at hit point at t=0, isinShadow
always intersects with object itself (returns true)

e Can fix this by starting shadow ray slightly away from hit point.

E.g. in figure, start shadow feeler starts at p,-¢ dir

Note: feeler is € toward eye
NOT light

Adding Shadows

How to put this back into shade() function?

After getFirstHit() returns closest hit point, add ambient
component

Next, build shadow feeler (per light source) with start point of p,-¢
dir

Feeler direction is set to (Light position — feeler start)

Call isinShadow(feeler) to determine object intersections (and hit
times)

If any valid intersections with object (t between 0 and 1), diffuse
and specular components are skipped else add them

Variable recurselevel is used to control how many times hit()
function can call itself. Set it to 1 for shadow ray

More on recurselLevel when we discuss reflection

Shade Function with Shadow
Pseudocode

feeler.start = hitPoint - ¢ ray.dir;

feeler.recurseLevel = 1;

color = ambient part;

for(each light source, L)

{
feeler.dir = L.pos - hitPoint;
1T(1sInShadow(feeler)) continue;
color.add(diffuse light);
color.add(specular light);

isinShadow() Implementation

bool Scene:: 1sInShadow(Ray& T)

{
for(GeomObj* p = obj; p; p = p->next)
1IT(p->hi1t(f)) return true;
return false;

e For real scene objects stored in linked list of GeomObj
e For simple scene, just check hardcoded objects
e Above, we use simplified hit() function

Only tests for hit time between 0 and 1

If valid hit, return, don’t fill hit record, hit object, etc

References

e Hill and Kelley, Computer Graphics using OpenGL,
edition, Chapter 12

3rd

