Computer Graphics (CS 543)
Lecture 11 (Part 2):
Ray Tracing (Part 4)

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Reflection and Transparency

Ray tracing also handles reflections and refraction of light well
We can easily render realistic scenes with

mirrors,

martini glasses

So, far, we have considered Local components (ambient, diffuse,
specular)

Local components are contributions from light sources which are
visible from hit point

To render reflection, and refraction we need to add reflection
and refraction components of light

| =1, + 145 + e +1

spec ref

tran

Reflection and Transparency

e First three components are local

= Tomo + Lairr + Voo + lren + 1

tran

spec

e Reflected component, I, is along mirror direction
from eye —r

Reflection and Transparency

® risgiven as (see eqn 4.22) as

r=dir—-2(direm)m

e Transmitted component /;
is along transmitted direction t
e Portion of light coming in from

direction t is bent along dir

e /,and /; each have their own It %
five components (ambient, diffuse, etc)

e In some sense, point P’ along reflected
direction r serves as a light source to point P,

Reflection and Transparency

To determine reflected component
Spawn reflected ray along direction r
Determine closest object hit

To determine transmitted component
Cast transmitted ray along
direction t
Determine closest object hit

So, at each hit point, local, reflected
and refracted components merge to
form total contributions

Reflection and Transparency: Ray Tree

Fig. 12. The ray tree in schamatic form.

e Local, reflected, transmitted and shadow rays form a tree

Reflection and Transparency

e Tree structure suggest recursion at successive hit points
e Recurse forever? No!!

e At each point, only fraction of impinging reflected or refracted
ray is lost

e Who determines fraction? Designer... sets transparency or
reflectivity in SDL file.

e E.greflectivity 0.8 means only 80% of impinging ray is reflected
e Thus, need to check reflected contribution by saying

if (reflectivity > 0.6)...

e Also check if(transparency > threshold)

e Basically, do not want to work hard for tiny contributions. Drop
(terminate shade) if contribution is too small

Refraction and Transparency

e May also need to determine how many times you want to
bounce (even if threshold is still high)

e For example, in room with many mirrors, do you want to
bounce forever (your system may cry!!)

e Setrecurselevel (yup!! same as in shadows) to say how many
bounces using (variable maxRecursionLevel)

e recurselevel of 4 or 5 is usually enough to create realistic
pictures

e Ray from eye to first hit point has recurselLevel of O
e All rays from first hit point have recurselLevel =1
e Need to modify shade function to handle recursion

Recursive shade() skeleton

Color3 Scene::shade(Ray&)

{
Get the first hit, and buirld hitInfo h

Color3 color.set(the emissive component);
color.add(ambient contribution);
get normalized normal vector m at hit point
for(each light source)

add the diffuse and specular components
// now add the reflected and transmitted components

iIT(r.recurselLevel == maxRecursionLevel)
return color; // don’t recurse further

Recursive shade() skeleton

iIT(hit object i1s shiny enough) // add reflected light
{

get reflection direction
build reflected ray, refl
refl._recurseLevel = r.recurselLevel + 1;
color.add(shininess * shade(refl));

+

iIT(hit object i1s transparent enough)

{
get transmitted direction
build transmitted ray, trans
trans.recurselLevel = r.recurselLevel + 1;
color.add(transparency * shade(trans));

}

return color;

Finding Transmitted Direction

e So far, found reflected direction ray direction as mirror
direction from eye

e Transmitted direction obeys Snell’s law
e Snell’s law: relationship holds in the following diagram

sin(é,) _ sin(é,)

C2 Cl
faster

slower
C,, C, are speeds of light in
medium 1 and 2

Finding Transmitted Direction

e If ray goes from faster to slower medium, ray is bent towards
normal

e If ray goes from slower to faster medium, ray is bent away
from normal

e cl/c2isimportant. Usually measured for medium-to-vacuum.
E.g water to vacuum

e Some measured relative c1/c2 are:
Air: 99.97%
Glass: 52.2% to 59%
Water: 75.19%
Sapphire: 56.50%
Diamond: 41.33%

Critical Angle

e There exists transmitted angle at which ray in faster medium
(e.g. air) is bent along object surface

e That angle (6, in figure below) is known as the critical angle

e Increasing transmission angle beyond critical angle has “no
effect”... transmitted ray still below object surface

e Physical significance:

Underwater in pond, can see m
A
enter world through small 0,
cone of angles faster __ s
Py
slower

Transmission Angle

e Vector for transmission angle can be found as

t:CZdir+[C2(m odir)—cos(é’z)]m
Cl Cl

l where

C, . o dir)?
c1 cos(é’z):\/l—[c)(l (m dlr))

1

Medium #1

Medium #2

For Project 5

e May read up hit (intersection) functions for
meshes

e Add to your ray tracer

References

e Hill and Kelley, Computer Graphics using OpenGL,
edition, Chapter 12

3rd

