Computer Graphics (CS 4731)
Lecture 5 (Part 1)
Introduction to Transformations

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

So Far: Representing a Mesh

e Learned how to read in and store graphics
objects/meshes

§§“ \ “

e
AN

Introduction to Transformations

e May also want to transformation objects by changing its:
e Position (translation)
e Size (scaling)
e Orientation (rotation)
e Shapes (shear)

Translation

e Move each vertex by same distanced = (d,, dy, d,)

translation: every point displaced
by same vector

Scaling

Expand or contract along each axis (fixed point of origin)

X'=8, X
y'=s,y
2'=S,Z

p’=Sp

where

S =35(sy, Sys S)

Introduction to Transformations

e We can transform (translation, scaling, rotation, shearing, etc)
object by applying matrix multiplications to object vertices

/.

/QX

y

Q
Q,

1)

Transformed Vertex

My3
M3
0

m
My,
m

34

1

Transform Matrix

/px\
P

y

P

z

1)

\

Original Vertex

e Note: point (x,y,z) needs to be represented as (x,y,z,1), also

called

Why Matrices?

e Multiple transform matrices can be pre-multiplied
e For example:

transform 1

transform 2

(Qx) (m, m, m; my, \ m, m, m; My, Px)
Qy _ My My, Myz My, | My My, Myy My, Py
Qz My, My My Mg, | My My, Mgy Mgy P

1\0001\00011/\

Transform Matrices can Original Point
Transformed Point Be pre-multiplied

Translation

e To reposition a point along a straight line

e Given point (x,y) and translation distance (t,, t)

e The new point: (x’,y’)

’—
X=X+t

Y=y +t,

or

P=P+T where

2D Translation Matrix => 3x3 Matrix

I use 3x1 vector

(X" 1 0 t) (X))
y| = (0 1t y
1) 0 0 1, 1)

*Note: it becomes a matrix-vector multiplication

Translation of Objects

*How to translate an object with multiple vertices?

> ty =3 ‘:f% ___________ Z r /
I:I Translate individual VoL i
vertices 7 -
X' 1 0 3 0.5 t, =3
y'l= (0 1 * 105
1 0 0 1 1 Repeat multiplication

for all four vertices

3D Translation Matrix

=Now, 3D :

Translate(tx,ty,tz)

(t)

0 1

\tz}

(X)

y
Z

Y

"Where: xX=x.1 + y.0 +z.0 +tx.1 =x +tX, ... etc

3D Translation

e Move each vertex by same distance d = (d,, dy, d,)

translation: every point displaced
by same vector

2D Scaling

=Scale: Alter object size by scaling factor (s,, s,). about origin

(1.1)

(2,2)

v

- 0

Sx=2,Sy =2

o s

(2,2)

)

v

(4.4)

2D Scaling Matrix

;

/X'\

1)

[SX

1 — O

L0

:j :@X soy](

’

0 0)
Sy 0

0 1,

)

(X))

ey

4x4 3D Scaling Matrix
(XY (Sx 0 0) (x)
y'i=| 0 Sy O*y
1) (o 0 1)1
(XY (S, 0 0 0) (x
y' _ 0 S, 0 0 Y
Z' 0O 0 S, 0] |z
(1) Lo 0 o 1)1

*Example:
olf SXx=Sy=5z2=0.5
*Can scale:

* big cube (sides = 1) to
small cube (sides = 0.5)

«2D: square, 3D cube

Scale(Sx,Sy,Sz)

Scaling

Expand or contract along each axis (fixed point of origin)

X'=8, X
y'=s,y
2'=S,Z
p’=Sp
s, 0 0
S5) 0 s, O
=S(S,, S, S,) =
' 0 0 s,
0 0 0 1

Shearing

(x.y)
(X +y*h,y)

—

Y coordinates are unaffected, but x cordinates are translated linearly

with y
That is:
y'=y X' 1 h O X
X'=X + Yy * h yl _ O 1 O * y
1 0 0 1 1

=h is fraction of y to be added to x

3D Shear

i
B 2

Reflection

corresponds to negative scale factors
y
A

original

-

it 4

i W R

wm
X
I
I
=
w
<
I
I
=
?\‘*?)ﬁd
w
X
I
=
w
<

References

e Angel and Shreiner, Interactive Computer Graphics,
6t edition, Chapter 3

e Hill and Kelley, Computer Graphics using OpenGL, 3"
edition

