Computer Graphics (CS 543)
Lecture 6 (Part 2): Viewing & Camera
Control

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Objectives

e Introduce viewing functions
e Look at enhanced camera controls

3D Viewing?

e Scene objects inside view volume show up on screen
e Objects outside view colume clipped!

2. Set view volume
(3D region of interest)

1. Set camera position viewing /

\\ volume

camera

tripod

Different View Volume Shapes

X

N

: : rth nal view volum
Perspective view volume Orthogonal vie ofume

e Foreshortening? Near objects bigger

e Perpective projection has foreshortening

e /|
| 1! e

e Orthogonal projection: no foreshortening

The World Frames

e Objects/scene initially defined in world frame

e Transformations (translate, scale, rotate) applied to
objects in world frame

¥o¥e
ﬂ i
World frame o

(Origin at 0,0,0) \

(a)

Camera Frame

More natural to refer to object positions relative to eye

After we define camera (eye) position, then represent objects
in camera frame (origin at eye position)

Objects positions in world frame to positions in camera frame
using model-view matrix

World frame @ ¥
(Origin at 0,0,0) \

Camera frame
o (Origin at camera)

The OpenGL Camera

e Initially object and camera frames the same
e Camera located at origin and points in negative z direction

e Default view volume is cube (orthogonal) with sides of length

2, at origin
Y

clipped out
View volume (only /
objects inside are seen) ‘2/' '
) S —

(| — Projection plane
Z
z=0

Moving the Camera Frame

e If we want to move objects some distance from camera
(e.g. 5m from camera), we can either

1. Move camera backwards -5m (in +z direction)
2. Move objects forwards +5m (in -z direction)

e Both approaches yield same result

e Object distances relative to camera determined by the
model-view matrix
e Transforms (scale, translate, rotate) go into modelview matrix
e Camera transforms also go in modelview matrix (CTM)

Moving Camera back from Origin

frames after translation by —d

d>0 y
A

default frames

Yr Ye

X

/ /

Ye
Z

(a) (b)

Moving the Camera

e We can move camera to any position by a sequence
of rotations and translations

i

e Example: side view
Rotate the camera

Move it away from origin

Model-view matrix C=TR
P X

gf/fi;f;ff””////,
// Using mat.h R

mat4 t = Translate (0.0, 0.0, -d);
mat4 ry = RotateY(90.0);
mat4d m = t*ry;

The LookAt Function

e The GLU library contained function gluLookAt to form
required modelview matrix for camera positioning

e gluLookAt deprecated!!

e Homegrown mat4 method LookAt() in mat.h
e Can concatenate with modeling transformations

void display(){

mat4d mv = LookAt(vec4 eye, vecd at, vecd up);

00
0000
o000
b
LookAt -
LookAt(eye, at, up)
y
(ot , ot , at_) &
X \y &
(upx, up,,, upz) . :
o - X
] |
Z But Why do we set
(eye,, eye, , eye) Up direction?

Programmer defines:

* eye position

e LookAt point (at) and

e Up vector (Up direction usually (0,1,0))

Nate Robbins LookAt Demo

World-space view SCreen-space view

Command manipulation window

glTranslatef(0.00 , 0.00 , 0.00);
glRotatef(0.0 ,0.00 ,1.00 ,0.00 };
glScalef(1.00 , 1.00 , 1.00);

glBegin({ ... J;

Click on the arguments and move the mouse to modify values.

Warld-space view Screen-space view

Command manipulation window

GlLfloat pos[4] ={ 1.50 ,1.00 , 1.00 ,0.00 }
gluLookAt(0.00 ,0.00 ,2.00 , «<«-eye
0.00 ,0.00 ,000 , < center
0.00 ,1.00 ,000) <-up

glLightfv(GL_LIGHTO, GL_POSITION, pos);

Click on the arguments and move the mouse to modify values.

Camera with Arbitrary Orientation

and Position

e Programmer defines eye, lookAt and Up

e LookAt method:

e Form new axes (u, v, n) at camera

e Transform objects from world to eye camera frame

Eye coordinate

World coordinate
Frame

Frame

Camera with Arbitrary Orientation

and Position

e Define new axes at eye

v points vertically upward,
n away from the view volume,

u at right angles to both n and v.

The camera looks toward -n.
All vectors are normalized.

Eye coordinate

Frame

World coordinate
Frame

ﬁ:

LookAt: Effect of Changing Eye Position
or LookAt Point

e Programmer sets LOOkAt(eye, at, up)

e If eye, lookAt point changes => u,v,n changes

<> < >
S SIS

S
s

N

A
Q
0
J
4

Viewing Transformation

e Viewing Transformation?
Form a camera (u,v,n) coordinate frame

Transform objects from world to eye space (Composes
matrix for coordinate transformation)

e So, first, let’s form camera (u,v,n) frame

Eye Coordinate Frame

Constructing u,v,n?

Lookat function parameters: LookAt(eye, at, up)
Known: eye position, LookAt Point, up vector

Derive: new origin and three basis (u,v,n) vectors

Lookat Point ' Assumption: direction of view is
4 e __F,/:" eye orthogqnal to yiew plan_e (plane
0 L*/ that objects will be projected onto)
90 S

Eye Coordinate Frame

e New Origin: eye position (that was easy)

e 3 basis vectors:

e one is the normal vector (n) of the viewing plane,

e other two (u and v) span the viewing plane

Lookat Point

A

world origin

»
>

(u,v,n should all be orthogonal)

N is pointing away from the
world because we use left
hand coordinate system

Lookat Point
I

Remember u,v,n should
be all unit vectors

Eye Coordinate Frame

e How about uand v?

e\We can get u first -
eU IS a vector that is perp
to the plane spanned by
N and view up vector (V_up)

U=V up x n

v

u U/ U]

Eye Coordinate Frame

How about v?

\V4
V_up Knowing n and u, getting v
IS easy
Lookat
A vV = Nn X Uu

Vv Is already normalized

v

Eye Coordinate Frame

Put it all together

v

Eye space origin: (Eye.x , Eye.y,Eye.z)
Basis vectors:
(eye — Lookat) / | eye — Lookat|

(W upx n)/ |V upxn|
n x u

n
u

(X X)
‘XX
o0
O
World to Eye Transformation
e Next, use u, v, n to compose LookAt matrix
e Transformation matrix (M,,.) ?
P’ = MwZex P
\4 u 1. Come up with transformation
Ly \A sequence that lines up eye frame
P N with world frame
(o)
world 2. Apply this transform sequence to
point P in reverse order

v
X

World to Eye Transformation

Rotate eye frame to “align” it with world frame

Translate (-ex, -ey, -ez) to align origin with eye

Rotation: ux uy uz
v VX VY VZ
U nxX Ny Nz
Yy
1y \L, N O 0O O
(ex,ey,ez)
world
> X Translation: 1 0 O
O 1 O
O 0 1
O 0 O

L oOOC

-eXx

-ey
-eZ

World to Eye Transformation

Transformation order: apply the transformation to the
object in reverse order - translation first, and then rotate

Rotation Translation
1 0 O -ex
Mw2e = ux uy ux O
© vX vy vz O O 1 0O -ey
nx ny nz O O 0 1 -ez
O 0O O 1 O 0O O 1
Ve
y n ux uy uz -e.Uu Multiplied together
(ex,ey,ez) . VX VY VZ -€ .V_| _— —|gokAttransform
worl|d — nNX ny nz -e.n

/—’x O 0 O 1

Note: e.u = ex.ux + ey.uy + ez.uz

lookAt Implementation (from mat.h)

matd LookAt(

{

.

vecd n
vecd u
vec4d v
vecd t
mat4d c
return

C

const vec4& eye, const vec4& at, const vec4& up)

normalize(eye - at);
normalize(cross(up,n));
normalize(cross(n,u));
vec4(0.0, 0.0, 0.0, 1.0);
mat4(u, v, n, t);

* Translate(-eye);

ux uy uz
VX VY VZ
nxX ny nz
O 0 O

-e . u

-€ .V

-e . n
1

Other Camera Controls

e The LookAt function is only way of positioning the
camera

e Other ways to specify camera position/movement
Yaw, pitch, roll

Elevation, azimuth, twist
Direction angles

Flexible Camera Control

e Sometimes, we want camera to move
e Like controlling a airplane’s orientation

e Adopt aviation terms:
Pitch: nose up-down
Roll: roll body of plane
Yaw: move nose side to side

a) pitch B roll c) yaw

A ;

Yaw, Pitch and Roll Applied to Camera

e Similarly, yaw, pitch, roll with a camera

a'i camera orientation b with roll ¢ no roll
-

|—|.-"r-"I —1

u
-

Flexible Camera Control

e Create a camera class

class Camera
private:
Point3 eye;
Vector3 u, v, n;... etc

e User can specify pitch, roll, yaw to change camera. E.g

cam.slide(-1, 0, -2); // slide camera forward and left
cam.rol1(30); // roll camera through 30 degrees
cam.yaw(40); // yaw 1t through 40 degrees
cam.pitch(20); // pitch 1t through 20 degrees

Implementing Flexible Camera Control

General approach
Camera class maintains current (u,v,n) and eye position

class Camera
private:
PoiInt3 eye;
Vector3 u, v, n;... etc

User inputs desired roll, pitch, yaw angle or slide

Calculate modified vector (u, v, n) or new eye position
after applying roll, pitch, slide, or yaw

Compose and load modified modelview matrix (CTM)

Load Matrix into CTM

void Camera: :setModelViewMatrix(void)

{ // load modelview matrix with camera

mat4d m;

Vector3 eVec(eye.x, eye.

m[O] = u.x; m[4] =
m[1] = v.x; m[5] =
m[2] = n.x; m[6] =
m[3] = 0; m[7] =

CTM = m; // Finally,

u.y;
V.y;
n.y;
0;

y, eye.z);//

m[8] = u.z;
m[9] = v.z;
m[10] = n.z;
m[11] = O;

values

Ux uy uz |[-e. u
VX VY VZ |-e .V
nNX ny nz -e.n
O 0O O 1

eye as vector

m[12]
m[13]
m[14]
m[15]

—dot(eVec,u)”,
-dot(eVec,Vv);
-dot(eVec,n);
1.0;

load matrix m into CTM Matrix

o Call setModelViewMatrix after slide, roll, pitch or yaw

« Slide changes eVec,

* roll, pitch, yaw, change u, v, n

Example: Camera Slide

e User changes eye by delU, delV or delN
e eye = eye + changes (delU, delV, delN)
e Note: function below combines all slides into one

voild camera::slide(float delU, float delV, float delN)
{
eye.x += delU*u.x + delV*v.x + delN*n.x;
eye.y += delU*u.y + delV*v.y + delN*n.y;
eye.z += delU*u.z + delV*v.z + delN*n.z;
setModelViewMatrix();

E.g moving camera by D along its u axis
= eye + Du

Example: Camera Roll

vy v u'= cos(a)u +sin(a)v
\ .
\\OC e V'=—sin(a)u+cos(a)Vv
| ////oc//
/,\(/ » U
="\
\

void Camera::roll(float angle)

{ // roll the camera through angle degrees
float cs = co0s(3.142/180 * angle);
float sn = siIn(3.142/180 * angle);
Vector3 t = u; // remember old u

u.set(cs*t.x — sn*v.x, cs*t.y — sn.v.y, cs*t.z — sn.v.z);

v.set(sn*t.x + cs*v.x, sn*t.y + cs.v.y, sn*t.z + cs.v.z)
setModelViewMatrix();

References

e Interactive Computer Graphics, Angel and Shreiner,
Chapter 4

e Computer Graphics using OpenGL (3™ edition), Hill
and Kelley

