Computer Graphics (CS 543)
Lecture 8 (Part 1): Lighting, Shading and
Materials (Part 1)

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Lighting?

e Problem: Model light-surface interaction at vertices
to determine vertex color and brightness

e Need to calcuate angle that surface makes with light
e Per vertex calculation? Usually done in vertex shader

lighting

NTTT———

Shading?

e After triangle is rasterized (drawn)

Triangle converted to a group of pixels

Per-vertex lighting calculation means we know color of
pixels coinciding with vertices (red dots)

e Shading problem: figure out color of interior pixels
e How? Assume linear change => interpolate

Shading

Lighting (or lllumination) Model?

e Governing principles for computing illumination

e An illumination model usually considers:

3.

Interaction
between lights and objects

/ 1\

‘ \

1.

Light attributes:
intensity, color, position,
direction, shape

2.

Surface attributes

color, reflectivity,
transparency, etc

Why do we need Lighting & shading?

e Sphere without lighting & shading

e We want (sphere with shading):

e Has visual cues for humans (shape, light position, viewer
position, surface orientation, material properties, etc)

Light Bounces at Surfaces °

e Light strikes A

e Some reflected

e Some absorbed e L

e Some reflected light 71X
from A strikes B /!

e Some reflected
e Some absorbed

e Some of this reflected
light strikes A and so on

e The infinite reflection, scattering and absorption of
light is described by the rendering equation

Rendering Equation

e Introduced by James Kajiya in 86 Siggraph paper.
e Mathematical basis for all global illumination algorithms

Lo=Le(x, &)+ [TT (X, @', @)Li(xa) (@' R)da
Li

Lo
() I_O |S OUthing radiance \/
e LI incident radiance

fr Le

e Le emitted radiance,

e fris bidirectional reflectance distribution function (BRDF)
Describes how a surface reflects light energy
Fraction of incident light reflected

Rendering Equation

Lo=Le(x, &)+ [TT (X, @', @)Li(xa) (@' R)da

e Rendering equation cannot be solved in general

e Rendering algorithms solve approximately. E.g.
oy sampling discretely

e Ray tracing solves special case for perfectly
reflecting surfaces

e Rendering equation includes many effects
Reflection

Shadows
Multiple scattering from object to object

Global lllumination (Lighting) Model

e Global illumination: model interaction of light from
all surfaces in scene (track multiple bounces)

shadow

multiple reflection

translucent surface

Local lllumination (Lighting) Model

e One bounce!

Doesn’t track inter-reflections, transmissions
e Simple! Only considers

Light

Viewer position

Surface Material properties

D v

Sl

Local vs Global Rendering

e Global lllumination is accurate, looks real

But raster graphics pipeline (like OpenGL) renders
each polygon independently (local rendering)

OpenGL cannot render full global illumination

e However, we can use techniques exist for
approximating (faking) global effects

Light-Material Interaction

e Light strikes object, some absorbed, some reflected

e Fraction reflected determines object color and
brightness

e Example: A surface looks red under white light because red
component of light is reflected, other wavelengths absorbed

e Reflected light depends on surface smoothness and
orientation

£

/ 1\

‘ \

Light Sources

e General light sources are difficult to model
because we must integrate light coming from all
points on light source

Basic Light Sources

e We generally use simpler light sources
e Abstractions that are easier to model

Point light Directional light Light intensity can be

independent or
dependent of the

distance between object

T mevetsnzor

Spot light Area light

Phong Model

e Simple lighting model that can be computed quickly
e 3 components

e Diffuse

e Specular

e Ambient

e Compute each component separately
e Vertex lllumination =
ambient + diffuse + specular

e Materials reflect each component differently
e Material reflection coefficients control reflection

1
o

Phong Model
e Compute lighting (components) at each vertex (P)
e Uses 4 vectors, from vertex

To light source (l)

To viewer (v)

Normal (n)

Mirror direction (r) n v B

N t
r

Mirror Direction?

e Angle of reflection = angle of incidence
e Normal is determined by surface orientation
e The three vectors must be coplanar

r=2(1-n)n-1

Surface Roughness

e Smooth surfaces: more reflected light concentrated in
mirror direction

e Rough surfaces: reflects light in all directions

Ny

smooth surface rough surface

Diffuse Lighting Example

Diffuse Light Reflected

e lllumination surface receives from a light source
and reflects equally in all directions

/-

___——

Eye position does not matter

Diffuse Light Calculation

e How much light received from light source?
e Based on Lambert’s Law

-

Receive more light Receive less light

/ 1\

| \

T

\J

Diffuse Light Calculation °

N : surface normal

light vector ‘\GT
(from object A
to light)

e Lambert’s law: radiant energy D a small surface
patch receives from a light source is:

D =1 x kg cos (0)
e I: light intensity

e 0O: angle between light vector and surface normal
e ky: Diffuse reflection coefficient.
Controls how much diffuse light surface reflects

Specular light example °

Specular?
Bright spot
on object

coos
i
Specular light contribution °
Incoming light reflected out in small surface area
Specular bright in mirror direction
. . . specular
Drops off away from mirror direction highlight

Depends on viewer position relative
to mirror direction

~g

. Mirror direction:

Sees lots of
L‘ specular
..Away from mirror direction

Sees a little specular

71\

| \

Specular light calculation

e Perfect reflection surface: all specular seen in mirror
direction

e Non-perfect (real) surface: some specular still seen
away from mirror direction

e ¢is deviation of view angle from mirror direction
e Small ¢ = more specular

0 ‘/ Mirror direction

p

/1N

| \

Modeling Specular Relections

I\
- 3
<

Mirror direction

I, = kI cos*¢

reflected \ shininess coef

intensity | Incoming intensity
absorption coef

The Shininess Coefficient, o

e o controls falloff sharpness
e High a = sharper falloff = small, bright highlight
e Low a = slow falloff = large, dull highlight

e o between 100 and 200 = metals
e o between 5 and 10 = plastic look

COS* ¢

-90

Specular light: Effect of ‘o’ o

I, = kI cos*¢

a =270

Ambient Light Contribution

e Very simple approximation of global illumination
e Assume to be a constant
e No direction!

Independent of light position, object orientation, observer’s
position or orientation

\oﬂe%
object 3@ < “sgobject 2

o

object 1

Ambient = la x Ka «—+— constant

Ambient Light Example

Ambient: background light,
scattered by environment

Light Attentuation with Distance

e Light reaching a surface inversely proportional to
square of distance

e We can multiply by factor

of form 1/(ad + bd +cd?) to
diffuse and specular terms

Adding up the Components

e Addinng all components (no attentuation term),
phong model for each light source can be written as

diffuse I specular + ambient
| =k, 1,c0s0 + k.l ,cosp> + k.|
=kd Id(ln) + kS |S(V-l‘)°‘ + k

d d
n
e Note: 0 v
cosO =1-n | 1,
COSp =V - r '

Separate RGB Components

e We can separate red, green and blue components

e Instead of 3 light components |, |, 1,

E.g. Id = Idl” Idg’ Idb
9 coefficients for each point source
Idr' Idgf Idb' Isr' Isgf Isb' Iar' Iag' Iab
e Instead of 3 material components kj, kg, k.,
E.g. kd — kdr' kdg’ kdb
9 material absorption coefficients

K Ksor Koy Kooy Koo Ky Kory Koo Ko

dg’ srr Nsg2 arr Nag’

Put it all together -

e Instead of:

I=kglg(1-n) + K I (v-r) + kI

e We computing lighting for RGB colors separately
| _kdr Idr l-n +ksr Sr (V l’)Ot'l'kar ar

lg=Kgg lgg -1+ Kgg Iy (v -1)%+ Ky 1

Iy =Kgp lgp 1T-m + Ky by (v -1)2+ Ky 1y

e Above equation is just for one light source!!

e For N lights, repeat calculation for each light

Total illumination for a point P = X (Lighting for all lights)

Coefficients for Real Materials

Material | Ambient Diffuse Specular Exponent, O
Kar, Kag,kab Kdr, Kdg,kdb | Ksr, Ksg,ksb
Black 0.0 0.01 0.5 32
plastic | 0.0 0.01 0.5
0.0 0.01 0.5
Brass 0.329412 0.780392 0.992157 27.8974
0.223529 0.568627 0.941176
0.027451 0.113725 0.807843
Polished | 0.23125 0.2775 0.773911 89.6
Silver 0.23125 0.2775 0.773911
0.23125 0.2775 0.773911

Figure 8.17, Hill, courtesy of McReynolds and Blythe

References

e Interactive Computer Graphics (6t edition), Angel
and Shreiner

e Computer Graphics using OpenGL (3™ edition), Hill
and Kelley

