Computer Graphics (CS 543)
Lecture 9 (Part 2): Lighting, Shading and
Materials (Part 3)

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Recall: Flat Shading

e compute lighting once for each face, assign color
to whole face

Recall: Mach Band Effect °

e Flat shading suffers from “mach band effect”

e Mach band effect — human eyes accentuate
the discontinuity at the boundary

perceived intensity

PENZN

Side view of a polygonal surface

Recall: Smooth shading

e Fix mach band effect — remove edge discontinuity
e Compute lighting for more points on each face

e 2 popular methods:
e Gouraud shading
e Phong shading

A 4

Flat shading Smooth shading

Recall: Gouraud Shading :

e Lighting calculated for each polygon vertex
e Colors are interpolated for interior pixels

e Interpolation? Assume linear change from one
vertex color to another

Gouraud Shading

e Compute vertex color in vertex shader

e Shade interior pixels: vertex color interpolation

Ca=lerp(C1, C2)

C2

C1l

Cb =lerp(C1, C3)

C3
Lerp(Ca, Cb)

for all scanlines

v

* lerp: linear interpolation

Linear interpolation Example

e O O o
—— a | b | x_(a+b) v
vl X V2

If a =60, b =40

RGB color atvl =(0.1, 0.4, 0.2)
RGB color at v2 =(0.15, 0.3, 0.5)
Red value of vl = 0.1, red value of v2 = 0.15

e O o
—— 60— 40 |
0.1 X 0.15

Red value of x = 40/100 * 0.1 + 60/100 * 0.15
=0.04 +0.09=0.13

Similar calculations for Green and Blue values

a *
(a+b)

v2

Gouraud Shading -

e Interpolate triangle color

1.

Interpolate y distance of end points () to get
color of two end points in scanline (red dots)

Interpolate x distance of two end points in scanline (red
dots) to get color of pixel (blue dot)

Gouraud Shading Function sece
(Pg. 433 of Hill) :

for(Int y = VYpores Y < Yiops Y++) // For each scan line
Find Xjepe and Xpjgne
find color. and color ..
color;,. = (color, y _ color ee)/ (Kright — Xiert)
For(Int X = Xjepe, C = COlOF s X < X X++, c+ = color;,.)

{

right;

put c into the pixel at (X, Yy)

}
}

Gouraud Shading Implemenation

e Vertex lighting interpolated across entire face pixels
if passed to fragment shader in following way

1. Vertex shader: Calculate output color in vertex shader,
Declare output vertex color as out

l=kyly I-n+k I, (n-h)P+k, I,
2. Fragment shader: Declare color as in, use it, already
interpolated!!

/ 1\

‘ \

Calculating Normals for Meshes

e For meshes, already know how to calculate face
normals (e.g. Using Newell method)

e For polygonal models, Gouraud proposed using
average of normals around a mesh vertex

n = (Ny+N,+ngtn,)/ [N+n,+ng+ny|

Gouraud Shading Problem

e If polygon mesh surfaces have high curvatures,
Gouraud shading may show edges

e Lighting in the polygon interior can be inaccurate
e Phong shading may look smooth

Gouraud) Gouraud

Phong Shading -

e Need normals for all pixels — not provided by user

e Instead of interpolating vertex color

e Interpolate vertex normal and vectors to calculate
normal (and vectors) at each each pixel inside polygon

e Use pixel normal to calculate Phong at pixel (per pixel
lighting)

Phong shading algorithm interpolates normals and

compute lighting in fragment shader

Phong Shading (Per Fragment)

e Normal interpolation

nl

na = lerp(nl, n2) nb = lerp(nl, n3)

N

lerp(na, nb)
n2

At each pixel, need to interpolate
Normals (n) and vectors v and |

Gouraud Vs Phong Shading Comparison

e Phong shading more work than Gouraud shading

Until recently not available in real time systems

Now can be done using fragment shaders

a. Gouraud Shading

» Set Vectors (I,n,v,h)
e Calculate vertex colors

Hardware
Interpolates
Vertex color

* Read/set fragment color

b. Phong Shading

Set Vectors (I,n,v,h)

Hardware
Interpolates
Vectors (I,n,v,h)

N

Y1« (Already interpolated)

* Read in vectors (l,n,v,h)
» (interpolated)
» Calculate fragment lighting

Per-Fragment Lighting Shaders | e

/] vertex shader
In vec4 vPosition;
In vec3 vNormal:

// output values that will be interpolatated per-fragment

out vec3 fN;
out vec3 fE:; <— Declare variables n, v, | as out in vertex shader
out vec3 fL;

uniform mat4 ModelView;
uniform vec4 LightPosition;
uniform mat4 Projection;

Per-Fragment Lighting Shaders Il | ::

void main()
{F

fN = vNormal;
fE = vPosition.xyz; <—— Set variables n, v, | in vertex shader
fL = LightPosition.xyz;

If(LightPosition.w '=0.0) {
fL = LightPosition.xyz - vPosition.xyz,

¥

gl_Position = Projection*ModelView*vPosition;

Per-Fragment Lighting Shaders Il

/[fragment shader

I/ per-fragment interpolated values from the vertex shader

In vec3 fN;
invec3 fLL: e Declare vectors n, v, | as in in fragment shader
in vecs fE: (Hardware interpolates these vectors)

uniform vec4 AmbientProduct, DiffuseProduct, SpecularProduct;
uniform mat4 ModelView;

uniform vec4 LightPosition;

uniform float Shininess;

Per=Fragment Lighting Shaders IV

void main()

{

// Normalize the input lighting vectors

vec3 N = normalize(fN);

vec3 E = normalize(fE); <— Use interpolated variables n, v, |
vec3 L = normalize(fL); in fragment shader

vec3 H =normalize(L + E);/
vecd ambient = AmbientProduct;

=Ky 0y I-n +K I (n-h)B+Kk, I

Per-Fragment Lighting Shaders V

float Kd = max(dot(L, N), 0.0); <—— Use interpolated variables n, v, |
vec4 diffuse = Kd*DiffuseProduct; " 29ment shader

float Ks = pow(max(dot(N, H), 0.0),Shininess);
vec4 specular = Ks*SpecularPreduct;

// discard the specular
If(dot(L, N) <0.0)
specular = vec4(0.0, 0.0, 0.0, 1.0);

ighlight if the light's behind the vertex

gl _FragColor = ambient + diffuse + specular;
gl _FragColor.a = 1.0;

} =K, 0, 1-n +k I (n-h)s+k I,

Toon (or Cel) Shading

e Non-Photorealistic (NPR) effect
e Shading in bands of color

Toon (or Cel) Shading

e How?

e Consider (I - n) diffuse term (or cos O) term
l=kyly I-n +k I, (n-h)B+k, I,

e Clamp values to get toon shading effect

|- n Value used
Between 0.75 and 1 0.75
Between 0.5 and 0.75 0.5
Between 0.25 and 0.5 0.25

Between 0.0 and 0.25 0.0

BRDF Evolution

e BRDFs have evolved historically
e 1970’s: Empirical models
e Phong’s illumination model
e 1980s:
e Physically based models
e Microfacet models (e.g. Cook Torrance model)
e 1990’s

e Physically-based appearance models of specific effects (materials,
weathering, dust, etc)

e Early 2000’s

e Measurement & acquisition of static materials/lights (wood,
translucence, etc)

e Late 2000’s
e Measurement & acquisition of time-varying BRDFs (ripening, etc)

Physically-Based Shading Models

e Phong model produces pretty pictures

e Cons: empirical (fudged?) (cos%g), plastic look

e Shaders can implement more lighting/shading models
e Big trend towards Physically-based models

e Physically-based?

Based on physics of how light interacts with actual surface
Dig into Optics/Physics literature and adapt results

e Classic: Cook-Torrance shading model (TOGS 1982)

Cook-Torrance Shading Model

e Similar ambient and diffuse terms to

e More complex specular component than (cos%),
e Define new specular term

F(4,7)DG

(n-v)

Cos” ¢ —

e Where

D - Distribution term
G — Geometric term
F — Fresnel term

Distribution Term, D

e Basic idea: model surfaces as made up of small V-shaped
grooves or “microfacets”

\ t Average
Incident \ ¢ normal m
on /\/\M\/

e Many grooves occur at each surface point

e Only perfectly facing grooves contribute

e D term expresses groove directions

e D expresses direction of aggregates (distribution)

e E.g. half of grooves at hit point face 30 degrees, etc

Cook-Torrance Shading Model

e Only microfacets with normal of V pointing in direction of halfway vector, h=s + v,
contributes

Define angle o as deviation of h from surface normal
D(0) is fraction of microfacets facing angle 6

Can actually plug old Phong cosine (cos"¢), in as D
More widely used is Beckmann distribution

1 _(tar:T(f))z
2 4 €
4m* cos” (o)
e Where m expresses roughness of surface

D(5) =

Cook-Torrance Shading Model

e m is actually Root-mean-square (RMS) value of
slope of V-groove

e Basically, m exresses slope of V-groove
e m = 0.2 for nearly smooth

e m = 0.6 for very rough

Geometric Term, G

e Surface may be so rough that interior of grooves
is blocked from light by edges

e This is known as shadowing or masking
e Geometric term G accounts for this

e Break G into 3 cases:

e G, case a: No self-shadowing

>

e Mathematically, G=1

Geometric Term, G

e G, case b: No blocking of incident light, partial
blocking of exitting light (masking)

_2(m-h)(m:h)

Gm
h-s

e Mathematically,

Geometric Term, G

e G, case c: Partial blocking of incident light, no
blocking of exitting light (shadowing)

e Mathematically,

Gm:ﬂthmh)
h-s
G=(16G,,G,)

e G term is minimum of 3 cases, hence

Fresnel Term, F

So, again recall that specular term
Flo,n)DG
sSpec = (?HQ)

Microfacets are not perfect mirrors
F term, F(¢, n) gives fraction of incident light reflected
@ is incident angle, ris refractive index of material

- Llo-of {1+(C(g“”j }
2(g+c) c(g—c)-1

where c =cos(@) =n.sand g?=n°*c? + 1

Other Physically-Based BRDF Models

e Oren-Nayar — Lambertian not specular

e Aishikhminn-Shirley — Grooves not v-shaped. Other
Shapes

e Microfacet generator
e BRDF viewer

.| %[BY Options

BV BRDF Viewer

4 | % | BRDF Parameter panel

Viewers Options
Hew Window
Tultiply by
~ 2D slices 4 LitSphere 27
~w Loganthi |+ cos(thetain) ~w cos(thetaing * cos(theta out)
3D view ~r Lit Plane ~ cos(theta out) -~ cos(thetain) + cos(theta out) Quit

[Lo1s [—{T# |

Surface roughness m

[150 | =TF | [0z {Ti=|
Real part Imaginary Part
Inclex of Refraction

[Loso | (¢ |
Specular reflectivity

[_o4n | {Tt |
Diffuse reflectivity

This is the Cook-Torrance —Sparrow BRDF, using a
Beckmann microfacet distribution function, Blinn‘s
geomettic shadowing term, and Fresnel reflection.
The parameters are the surface roughhess m {as used
i the Beckmann distribution), the index of refraction,
ahd the diffuse and specular reflectivities.

4 | % | BRDF Parameter panel

[_oos [~T |

Surface roughhess in & direction

[0z |

Surface roughhess in Y direction

[_oos |={T¢ |

Specular reflectivity

Il ' i |
[040 | {0k |

Diffuse reflectivity

COrientation

This is Greq Ward's Elliptical Gaussian BRDF.

It is predicted by a simple, but physically correct,
rough -surface madel, assuming different surface
roughness along the X and ¥ directions. Shadowing,
masking and Fresnel reflection are not included.

[| %|bv [0] (Ward sx=0.05, 5y=0.26, rs=0.05, rd=0.40) rotated by +000

BRDF Evolution

e BRDFs have evolved historically
e 1970’s: Empirical models
e Phong’s illumination model
e 1980s:
e Physically based models
e Microfacet models (e.g. Cook Torrance model)
e 1990’s

e Physically-based appearance models of specific effects (materials,
weathering, dust, etc)

e Early 2000’s

e Measurement & acquisition of static materials/lights (wood,
translucence, etc)

e Late 2000’s
e Measurement & acquisition of time-varying BRDFs (ripening, etc)

Measuring BRDFs

Source Driver Hoop
s
‘ Light Source
%

c '-— Sample Area

*. -n_..,_,-\ Rotating Annuli

-n—. \

4

Reflectance Detector =,

P y—— e omm o= w2

Transmittance Detector

Murray-Coleman and Smith Gonioreflectometer. (Copied and Modified from [Ward92]).

Measured BRDF Samples

e Mitsubishi Electric Research Lab (MERL)

http://www.merl.com/brdf/

e Wojciech Matusik i==EE=E===
e MIT PhD Thesis ﬂ-----ni'.
e 100 Samples 8. 0000
PeG. _S9Re.
¢de.=_0.._ 00
wilee W .6 _«
fuwuw 0200
Q. s BeE.
wBes _ & 0w

BRDF Evolution

BRDFs have evolved historically

1970’s: Empirical models

e Phong’s illumination model

1980s:

e Physically based models

e Microfacet models (e.g. Cook Torrance model)
1990’s

e Physically-based appearance models of specific effects (materials,
weathering, dust, etc)

Early 2000’s

e Measurement & acquisition of static materials/lights (wood,
translucence, etc)

Late 2000’s
e Measurement & acquisition of time-varying BRDFs (ripening, etc)

Time-varying BRDF

e BRDF: How different materials reflect light
e Time varying?: how reflectance changes over time

References

e Interactive Computer Graphics (6t edition), Angel
and Shreiner

e Computer Graphics using OpenGL (3™ edition), Hill
and Kelley

