Computer Graphics (CS 543)
Lecture 11 (Part 2): Clipping

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

OpenGL Stages

e After projection, several stages before objects drawn

to screen

e These stages are non-programmable

Transform

v

Projection

Primitive
Assembly

N

Hidden
Surface
Removal

A4

Clipping

/i

Rasterization

Primitive Assembly °

e Transformations and projections applied to vertices
individually

e Primitive assembly: After transforms, projections,
individual vertices grouped back into primitives

e E.g.v6,v7 and v8 grouped back into triangle

v3 v4

Clipping

e Subsequent operations necessary before display occur
per-primitive

e Clipping: Remove primitives (lines, polygons, text,
curves) outside view frustum

_— v D N
— 1"

Clipping lines Clipping polygons

Rasterization

e Determine which pixels that primitives map to
e Fragment generation
e Rasterization or scan conversion

Fragment Processing

e Some tasks deferred until fragment processing

Hidden Surface Removal

Geometric

Modeling —» :
processing

Transformation
Projection

Hidden surface Removal

Antialiasing

000
0000
L X N
o000
o0
o
Antialiasing
|
2]
I..
..
I _______ |
o | Fragment ! Frame
Rasterization ——» . Bl
| processing | | utter

Clipping

e 2D and 3D clipping algorithms
e 2D against clipping window
e 3D against clipping volume

e 2D clipping

Lines
Polygons
Curves
Text

L~ o

)

ABC

N
/)
=

N

AB

Clipping 2D Line Segments

e Brute force approach: compute intersections
with all sides of clipping window

e Inefficient: one division per intersection

G/A//B E/ /

2D Clipping: Cohen-Sutherland Algorithm

e Idea: eliminate as many cases as possible without
computing intersections

e Start with four lines that determine the sides of the
clipping window

y - ymax O

X = Xmin O X = Xmax

y= ymin

Clipping Points

(xmax, ymax)

(xmin, ymin)

Determine whether a point (x,y) is
inside or outside of the world
window?

If (xmin <= x <= xmax)
and (ymin <=y <= ymax)

then the point (x,y) is inside
else the point is outside

Clipping Lines

3 cases:
Case 1: All of line in
Case 2: All of line out
Case 3: Part in, part out

Clipping Lines: Trivial Accept

(Xmax, Ymax)

(Xmin, Ymin)

Case 1: All of line in
Test line endpoints:

Xmin <= P1.x, P2.x <= Xmax and
Ymin <= P1.y, P2.y <= Ymax

Note: simply comparing x,y values of
endpoints to x,y values of rectangle

Result: trivially accept.
Draw line in completely

Clipping Lines: Trivial Reject

Case 2: All of line out
Test line endpoints:

=" pl.x, p2.x <= Xmin OR
= pl.x, p2.x >= Xmax OR
=" pl.y, p2.y <=ymin OR
= pl.y, p2.y >= ymax

Note: simply comparing x,y values of
endpoints to x,y values of
rectangle

Result: trivially reject.
Don’t draw line in

Clipping Lines: Non-Trivial Cases

// A

¥

Case 3: Part in, part out

Two variations:
One point in, other out
Both points out, but part of line cuts
through viewport

Need to find inside segments

Use similar triangles to figure out length
of inside segments

Clipping Lines: Calculation example

p2

7]

e
dely

/
Y

d e

delx g

dely N delx

If chopping window has

(left, right, bottom, top) = (30, 220, 50, 240),
what happens when the following lines are
chopped?

(a) p1 = (40,140), p2 = (100, 200)

(b) p1 = (20,10), p2 = (20, 200)

(c) p1 = (100,180), p2 = (200, 250)

Cohen-Sutherland pseudocode (Hill)

int clipSegment(Point2& pl, Point2& p2, RealRect W)
{
do{
if(trivial accept) return 1; // whole line survives
if(trivial reject) return 0; // no portion survives
// now chop
1IT(pl 1s outside)
// Tind surviving segment
{
1IT(pl 1s to the left) chop against left edge
else 1T(pl 1s to the right) chop against right edge
else 1T(pl 1s below) chop against the bottom edge
else 1T(pl 1s above) chop against the top edge

Cohen-Sutherland pseudocode (Hill) | :

else // p2 i1s outside
// find surviving segment
{
1IT(p2 1s to the left) chop against left edge
else 1T (p2 1s to right) chop against right edge
else 1T (p2 i1s below) chop against the bottom edge
else 1T (p2 i1s above) chop against the top edge

+
Iwhile(l);

}

° 000
Using Outcodes to Speed oo
Up Comparisons

e For each endpoint, define an outcode

byb,b,0;
1001 | 1000 | 1010
— I I y= ymCIX
by=1 !f y>y...,0 otherw_lse 0001 | 0000 | 6010
b, =1ify<y,., 0otherwise y=y .
b, =1if x> Xx,,,, 0 otherwise 0101 | 0100 | 0110
by = 11f X < X,y O Otherwise X= Koo XK

e Outcodes divide space into 9 regions
e Trivial accept/reject becomes bit-wise comparison

X

References

e Angel and Shreiner, Interactive Computer Graphics,
6th edition

e Hill and Kelley, Computer Graphics using OpenGL, 3"
edition

