
Computer Graphics (CS 543)
Lecture 7b: Derivation of Perspective

Projection Transformation

Prof Emmanuel Agu

Computer Science Dept.

Worcester Polytechnic Institute (WPI)

Perspective Projection

 Projection – map the object from 3D space to
2D screen

x

y

z

Perspective()
Frustrum()

Perspective Projection: Classical

(0,0,0)

N

Projection plane

Eye (COP)

(x,y,z)

(x’,y’,z’)

-z

- z

y

Based on similar triangles:

y’ N
y -z

N
y’ = y x

-z

=

Near Plane
(VOP)

+ z

Perspective Projection: Classical

 So (x*,y*) projection of point, (x,y,z) unto near plane N is
given as:

 Numerical example:

Q. Where on the viewplane does P = (1, 0.5, -1.5) lie for a
near plane at N = 1?

 

















z

N
y

z

N
xyx ,**,

 )333.0,666.0(
5.1

1
5.0,

5.1

1
1,**, 



























z

N
y

z

N
xyx

Pseudodepth

 Classical perspective projection projects (x,y) coordinates to
(x*, y*), drops z coordinates

 But we need z to find closest object (depth testing)!!!

(0,0,0)

z

Map to same (x*,y*)
Compare their z values?

Perspective Transformation

 Perspective transformation maps actual z distance of
perspective view volume to range [–1 to 1] (Pseudodepth)
for canonical view volume

-Near

-Far

-1 1

Canonical view volume

Actual view volume

Pseudodepth

Actual depth
We want perspective
Transformation and
NOT classical projection!!

Set scaling z
Pseudodepth = az + b
Next solve for a and b

Perspective Transformation

 We want to transform viewing frustum
volume into canonical view volume

(-1, -1, 1)

(1, 1, -1)

Canonical View Volume

x

y

z

Perspective Transformation using
Pseudodepth

 Choose a, b so as z varies from Near to Far, pseudodepth
varies from –1 to 1 (canonical cube)

 Boundary conditions

 z* = -1 when z = -N

 z* = 1 when z = -F

 





















z

baz

z

N
y

z

N
xzyx ,,**,*,

-Near -Far

Canonical view
volume

Actual view
volume

Pseudodepth

Actual depth

1-1

Z*

Z

Transformation of z: Solve for a and b

 Solving:

 Use boundary conditions

 z* = -1 when z = -N………(1)

 z* = 1 when z = -F………..(2)

 Set up simultaneous equations

z

baz
z




*

)1........(1 baNN
N

baN





)2........(1 baFF
F

baF





Transformation of z: Solve for a and b

 Multiply both sides of (1) by -1

 Add eqns (2) and (3)

 Now put (4) back into (3)

)1........(baNN 

)2........(baFF 

)3........(baNN 

aFaNNF 

)4.........(
)(

NF

NF

FN

NF
a











Transformation of z: Solve for a and b

 Put solution for a back into eqn (3)

 So

b
NF

NFN
N 






)(

)3........(baNN 

NF

NFN
Nb






)(

NF

NF

NF

NNFNNF

NF

NFNNFN
b
















2)()(22

NF

NF
a






)(

NF

FN
b






2

What does this mean?

 Original point z in original view volume, transformed
into z* in canonical view volume

 where
-Near -Far

Canonical view
volume

Actual view
volume

1 -1

Original
vertex z value

Transformed
vertex z* value

z

baz
z




*

NF

NF
a






)(

NF

FN
b






2

Homogenous Coordinates

 Want to express projection transform as 4x4 matrix

 Previously, homogeneous coordinates of

P = (Px,Py,Pz) => (Px,Py,Pz,1)

 Introduce arbitrary scaling factor, w, so that

P = (wPx, wPy, wPz, w) (Note: w is non-zero)

 For example, the point P = (2,4,6) can be expressed as

 (2,4,6,1)

 or (4,8,12,2) where w=2

 or (6,12,18,3) where w = 3, or….

 To convert from homogeneous back to ordinary coordinates,
first divide all four terms by w and discard 4th term

Perspective Projection Matrix

 Recall Perspective Transform

 We have:

 In matrix form:





































































































1

)(

0100

00

000

000

z

baz
z

N
y

z

N
x

wz

bazw

wNy

wNx

w

wz

wy

wx

ba

N

N

 





















z

baz

z

N
y

z

N
xzyx ,,**,*,

z

N
xx


*
z

N
yy


*
z

baz
z




*

Perspective
Transform Matrix

Original
vertex

Transformed
Vertex

Transformed Vertex
after dividing by 4th term

Perspective Projection Matrix

 In perspective transform matrix, already solved for a
and b:

 So, we have transform matrix to transform z
values





































































































1

)(

0100

00

000

000

z

baz
z

N
y

z

N
x

wP

baPw

wNP

wNP

w

wP

wP

wP

ba

N

N

z

z

y

x

z

y

x

NF

NF
a






)(

NF

FN
b






2

Perspective Projection

 Not done yet!! Can now transform z!

 Also need to transform the x = (left, right) and y = (bottom, top)
ranges of viewing frustum to [-1, 1]

 Similar to glOrtho, we need to translate and scale previous matrix
along x and y to get final projection transform matrix

 we translate by
 –(right + left)/2 in x

 -(top + bottom)/2 in y

 Scale by:
 2/(right – left) in x

 2/(top – bottom) in y

1 -1

x

y

left right
bottom

top

Perspective Projection

 Translate along x and y to line up center with origin of CVV
 –(right + left)/2 in x

 -(top + bottom)/2 in y

 Multiply by translation matrix:

1 -1

x

y

left right

bottom

top

























1000

0100

2/)(010

2/)(001

bottomtop

leftright

Line up centers
Along x and y

Perspective Projection

 To bring view volume size down to size of of CVV, scale by

 2/(right – left) in x

 2/(top – bottom) in y

 Multiply by scale matrix:

1 -1

x

y

left right

bottom

top

Scale size down
along x and y





























1000

0100

00
2

0

000
2

bottomtop

leftright

Perspective Projection Matrix

glFrustum(left, right, bottom, top, N, F) N = near plane, F = far plane
















































0100

2)(
00

0
2

0

00
minmax

2

NF

FN

NF

NF

bottomtop

bottomtop

bottomtop

N

leftright

leftright

xx

N















































































0100

00

000

000

1000

0100

2/)(010

2/)(001

1000

0100

00
2

0

000
2

ba

N

N

bottomtop

leftright

bottomtop

leftright

Scale

Final Perspective
Transform Matrix

Translate

Previous
Perspective
Transform
Matrix

Perspective Transformation

 After perspective transformation, viewing
frustum volume is transformed into canonical
view volume

(-1, -1, 1)

(1, 1, -1)

Canonical View Volume

x

y

z

Geometric Nature of Perspective
Transform

a) Lines through eye map into lines parallel to z axis after transform

b) Lines perpendicular to z axis map to lines perp to z axis after transform

Normalization Transformation

original clipping
volume original object new clipping

volume

distorted object

projects correctly

References

 Interactive Computer Graphics (6th edition), Angel and
Shreiner

 Computer Graphics using OpenGL (3rd edition), Hill and Kelley

