Computer Graphics (CS 543)
Lecture 7b: Derivation of Perspective
Projection Transformation

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Perspective Projection

e Projection — map the object from 3D space to

2D screen

Perspective()
Frustrum()

Perspective Projection: Classical

Projectors
R

% Objectin 3 space

Projected image

VRP
: : ¥~cop
Projection plane
Y (xwy.2) o
" e Based on similar triangles:
(Xy'z)
(0,0,0) 9 y _ N
» = Z) -Z

+ Z—< |
foN
N
-Z — y = yx—

N 2

Eye (COP) Near Plane
(VOP)

Perspective Projection: Classical

e So (x*,y*) projection of point, (x,y,z) unto near plane N is

given as: S
“%-— Objectin 3 space
N N Projected image
(X*, y *) — (X Y j -
J— Z — Z VRP

‘-..._._COP

e Numerical example:

Q. Where on the viewplane does P = (1, 0.5, -1.5) lie for a
near planeat N =17

N N 1 1
X*,¥y*)=| X , =|1x—,0.5x— [=(0.666,0.333
(ex, y*) [_Z y_Z] (xl.S x1.5j ()

Pseudodepth

e Classical perspective projection projects (x,y) coordinates to
(x*, y*), drops z coordinates

Map to same (x*,y¥*)
Compare their z values?

Projectors \

- Objectin 3 space

Projected image

VRP (0,0,0)

e But we need z to find closest object (depth testing)!!!

Perspective Transformation

e Perspective transformation maps actual z distance of
perspective view volume to range [-1 to 1] (Pseudodepth)
for canonical view volume

/

~ Actual depth

[
»

Actual view volume

Near T

1

 Pseudpdepth

I~

-Far

Canonical view volume

We want perspective
Transformation and
NOT classical projection!!

Set scaling z
Pseudodepth = az + b
Next solve fora and b

Perspective Transformation

e We want to transform viewing frustum
volume into canonical view volume

(11 1/ _1)

P

(_11 _11 1) >

Canonical View Volume

Perspective Transformation using
Pseudodepth

(x*,y%,2)=[X_Z,y_z, —

N N az +bj

e Choose a, b so as z varies from Near to Far, pseudodepth

varies from =1 to 1 (canonical cube)
/ Actual view
volume

e Boundary conditions
 Actual depth

z* =-1whenz=-N 1>
z¥=1whenz=-F
'NQN -Far
APseudodeptrjl
Canonical view >
volume Z*

Transformation of z;: Solve foraand b

e Solving: N

—Z

Z*

e Use boundary conditions
e z*=-1whenz=-N......... (1)
e z*=1whenz=-F...........(2)

e Set up simultaneous equations

_—aN+b

-1 — —N =-aN +b........(1)

1:—aF+b

—F =—aF +b......(2)

Transformation of z;: Solve foraand b

e Add egns (2) and (3)

F+N=aN-aF
g PN _Z(FEN)
N-F F-N

e Now put (4) back into (3)

Transformation of z;: Solve foraand b

e Put solution for a back into egn (3)

:N_—N(F+N)_
F—N
:b:—N—_N(F+N)

F—N
p—N(F-N)-N(F+N) —NF-N’-NF+N”_—2NF
F—N F—N F—N

e SO
a:—(F+N) b:—ZFN

F—N F-N

What does this mean?

e Original point z in original view volume, transformed
into z* in canonical view volume

/

Original cglt:::e"iew
. az+b vertex z value
—7
-Near -Far
e where -
Qo —(F+N)
F-N Transformed —@ Canonical view
vertex z* value volume
—2FN
b=
F—N

Homogenous Coordinates

e Want to express projection transform as 4x4 matrix
e Previously, homogeneous coordinates of
P = (Px,Py,Pz) => (Px,Py,Pz,1)
e Introduce arbitrary scaling factor, w, so that
P = (wPx, wPy, wPz, w) (Note: w is non-zero)
e For example, the point P =(2,4,6) can be expressed as
(2,4,6,1)
or (4,8,12,2) where w=2
or (6,12,18,3) where w=3, or....

e To convert from homogeneous back to ordinary coordinates,
first divide all four terms by w and discard 4t term

Perspective Projection Matrix

e Recall Perspective Transform

N b
(X*,y*,Z*)=[X y N e)

-7 -7 -1
. N N az+b
e We have: . ._, N = y—o .
-7 —Z —Z
e |n matrix form: N
N O 0 0)wx WNX X _
O N O Ofjwy]| WNY Y N
0O 0 a bj|wz| |w@z+hb) a7 b
O O -1 ON w — WZ _ 5
1
Perspective Original Transformed Transformed Vertex
Transform Matrix vertex Vertex

after dividing by 4th term

Perspective Projection Matrix

N
N 0 0 OYwP WNP, —
0 N 0 ofwh | | wNR, | |y
0 0 a b|wP | |w@P +b) 07+ b
0 0 -1 O\ w — WP, —
1
—(F+N —
" EZ—N) b:|:2_F|I§|I

e In perspective transform matrix, already solved for a
and b:

e So, we have transform matrix to transform z
values

Perspective Projection

e Not done yet!! Can now transform z!

e Also need to transform the x = (left, right) and y = (bottom, top)

ranges of viewing frustum to [-1, 1]

e Similar to glOrtho, we need to translate and scale previous matrix

along x and y to get final projection transform matrix

e we translate by
—(right + left)/2 in x
-(top + bottom)/2 iny
e Scale by:
2/(right — left) in x
2/(top — bottom) iny

00
000
o0
[
Ay
top
'x
-1
bottom
left right

Perspective Projection

e Translate along x and y to line up center with origin of CVV
—(right + left)/2 in x
-(top + bottom)/2 iny

e Multiply by translation matrix:
1 0 0 —(right+left)/2

Ay
O 1 O —(top+bottom)/2 top
O 0 1 0
O 0 O 1
_— Vx
Line up centers /
Along x and y 1 -1
bottoni

Perspective Projection

e To bring view volume size down to size of of CVV, scale by
2/(right — left) in x
2/(top — bottom) iny

e Multiply by scale matrix:

2

- 0 00
right — left
0 2 50 top
top —bottom \
0 0 10
0 0 0 1

_—
Scale size down /
along x and 1
9 y bottom ’
left

Perspective Projection Matrix

Scale
- 2 0
right — left

2

top —bottom
0 0
0 0
2N

X max— X min
=) | °
0
0

glFrustum(left, right, bottom, top, N, F)

o O O Bk

top — bottom

000
o000
o0
®
Previous
Perspective
Transform
Translate Matrix
O 0O —(right+left)/2 N O O O
1 0 —(top+bottom)/2 O N O O
X
0O 1 0] O O a b
0O O 1 O O -1 0
right + left
right — left
top + bottom
top — bottom Final Perspective

-(F+N) —-2FN Transform Matrix
F-N F—N
-1 0

N = near plane, F = far plane

Perspective Transformation

e After perspective transformation, viewing
frustum volume is transformed into canonical
view volume

(11 1/ _1)

P

(_11 _11 1) >

Canonical View Volume

Geometric Nature of Perspective
Transform

a) Lines through eye map into lines parallel to z axis after transform

b) Lines perpendicular to z axis map to lines perp to z axis after transform

¥

Normalization Transformation o

distorted object
z= X projects correctly

N ya \ e

z = -far
I/\)<) %
original clipping 4, / :

- - - Z=)
volume original object new clipping
volume

References

e Interactive Computer Graphics (6" edition), Angel and
Shreiner

e Computer Graphics using OpenGL (3™ edition), Hill and Kelley

