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Perspective Projection

e Projection — map the object from 3D space to

2D screen
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Perspective Projection: Classical
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Perspective Projection: Classical

e So (x*,y*) projection of point, (x,y,z) unto near plane N is

given as: S
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e Numerical example:

Q. Where on the viewplane does P = (1, 0.5, -1.5) lie for a
near planeat N =17
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Pseudodepth

e Classical perspective projection projects (x,y) coordinates to
(x*, y*), drops z coordinates

Map to same (x*,y¥*)
Compare their z values?
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e But we need z to find closest object (depth testing)!!!



Perspective Transformation

e Perspective transformation maps actual z distance of
perspective view volume to range [ -1 to 1] (Pseudodepth)
for canonical view volume
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We want perspective
Transformation and
NOT classical projection!!

Set scaling z
Pseudodepth = az + b
Next solve fora and b



Perspective Transformation

e We want to transform viewing frustum
volume into canonical view volume
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Perspective Transformation using
Pseudodepth

(x*,y%,2 )=[X_Z,y_z, —

N N az +bj

e Choose a, b so as z varies from Near to Far, pseudodepth

varies from =1 to 1 (canonical cube)
/ Actual view
volume

e Boundary conditions
 Actual depth
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Transformation of z;: Solve foraand b

e Solving: N

—Z

Z*

e Use boundary conditions
e z*=-1whenz=-N......... (1)
e z*=1whenz=-F...........(2)

e Set up simultaneous equations
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Transformation of z;: Solve foraand b

e Add egns (2) and (3)
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e Now put (4) back into (3)




Transformation of z;: Solve foraand b

e Put solution for a back into egn (3)

:N_—N(F+N)_
F—N
:b:—N—_N(F+N)

F—N
_p_—N(F-N)-N(F+N) —NF-N’-NF+N”_—2NF
F—N F—N F—N

e SO
a:—(F+N) b:—ZFN

F—N F-N



What does this mean?

e Original point z in original view volume, transformed
into z* in canonical view volume
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Homogenous Coordinates

e Want to express projection transform as 4x4 matrix
e Previously, homogeneous coordinates of
P = (Px,Py,Pz) => (Px,Py,Pz,1)
e Introduce arbitrary scaling factor, w, so that
P = (wPx, wPy, wPz, w) (Note: w is non-zero)
e For example, the point P =(2,4,6) can be expressed as
(2,4,6,1)
or (4,8,12,2) where w=2
or (6,12,18,3) where w=3, or....

e To convert from homogeneous back to ordinary coordinates,
first divide all four terms by w and discard 4t term



Perspective Projection Matrix

e Recall Perspective Transform
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Perspective Projection Matrix
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e In perspective transform matrix, already solved for a
and b:

e So, we have transform matrix to transform z
values



Perspective Projection

e Not done yet!! Can now transform z!

e Also need to transform the x = (left, right) and y = (bottom, top)

ranges of viewing frustum to [-1, 1]

e Similar to glOrtho, we need to translate and scale previous matrix

along x and y to get final projection transform matrix

e we translate by
—(right + left)/2 in x
-(top + bottom)/2 iny
e Scale by:
2/(right — left) in x
2/(top — bottom) iny

00
000
o0
[
Ay
top
'x
-1
bottom
left right



Perspective Projection

e Translate along x and y to line up center with origin of CVV
—(right + left)/2 in x
-(top + bottom)/2 iny

e Multiply by translation matrix:
1 0 0 —(right+left)/2
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Perspective Projection

e To bring view volume size down to size of of CVV, scale by
2/(right — left) in x
2/(top — bottom) iny

e Multiply by scale matrix:
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Perspective Projection Matrix
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Perspective Transformation

e After perspective transformation, viewing
frustum volume is transformed into canonical
view volume
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Geometric Nature of Perspective
Transform

a) Lines through eye map into lines parallel to z axis after transform

b) Lines perpendicular to z axis map to lines perp to z axis after transform
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Normalization Transformation o
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