
Computer Graphics (CS 543)
Lecture 9c: Shadows and Fog

Prof Emmanuel Agu

Computer Science Dept.

Worcester Polytechnic Institute (WPI)

Introduction to Shadows
 Shadows give information on relative positions of objects

Use just ambient

component

Use ambient +

diffuse + specular

components

Why shadows?
 More realism and atmosphere

Image courtesy of BioWare

Neverwinter Nights

Types of Shadow Algorithms

 Project shadows as separate objects (like Peter
Pan's shadow)

 Projective shadows

 As volumes of space that are dark

 Shadow volumes [Franklin Crow 77]

 As places not seen from a light source looking at
the scene

 Shadow maps [Lance Williams 78]

 Fourth method used in ray tracing

Projective Shadows

 Oldest method: Used in early flight simulators

 Projection of polygon is polygon called shadow polygon

Actual polygon

Shadow polygon

Projective Shadows

 Works for flat surfaces illuminated by point light

 For each face, project vertices V to find V’ of shadow polygon

 Object shadow = union of projections of faces

Projective Shadow Algorithm

 Project light-object edges onto plane

 Algorithm:

 First, draw ground plane/scene using
specular+diffuse+ambient components

 Then, draw shadow projections (face by face) using only
ambient component

Projective Shadows for Polygon

1. If light is at (xl, yl, zl)

2. Vertex at (x, y, z)

3. Would like to calculate shadow polygon vertex V projected
onto ground at (xp, 0, zp)

(x,y,z)

(xp,0,zp)

Ground plane: y = 0

Projective Shadows for Polygon

 If we move original polygon so that light source is at origin

 Matrix M projects a vertex V to give

its projection V’ in shadow polygon



























00
1

0

0100

0010

0001

y
l

m

Building Shadow Projection Matrix

1. Translate source to origin with T(-xl, -yl, -zl)

2. Perspective projection

3. Translate back by T(xl, yl, zl)




































































1000

100

010

001

00
1

0

0100

0010

0001

1000

100

010

001

l

l

l

l

l

l

l

z

y

x

z

y

x

M

y

Final matrix that projects

Vertex V onto V’ in shadow polygon

Code snippets?

 Set up projection matrix in OpenGL application

float light[3]; // location of light

mat4 m; // shadow projection matrix initially identity

M[3][1] = -1.0/light[1];



























00
1

0

0100

0010

0001

y
l

M

Projective Shadow Code

 Set up object (e.g a square) to be drawn

point4 square[4] = {vec4(-0.5, 0.5, -0.5, 1.0}

{vec4(-0.5, 0.5, -0.5, 1.0}

{vec4(-0.5, 0.5, -0.5, 1.0}

{vec4(-0.5, 0.5, -0.5, 1.0}

 Copy square to VBO

 Pass modelview, projection matrices to vertex shader

What next?

 Next, we load model_view as usual then draw

original polygon

 Then load shadow projection matrix, change color to
black, re-render polygon

1. Load modelview

draw polygon as usual

2. Modify modelview with

Shadow projection matrix

Re-render as black (or ambient)

Shadow projection Display() Function

void display()

{

mat4 mm;

// clear the window

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// render red square (original square) using modelview

// matrix as usual (previously set up)

glUniform4fv(color_loc, 1, red);

glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);

Shadow projection Display() Function
// modify modelview matrix to project square

// and send modified model_view matrix to shader

mm = model_view

* Translate(light[0], light[1], light[2]

*m

* Translate(-light[0], -light[1], -light[2]);

glUniformMatrix4fv(matrix_loc, 1, GL_TRUE, mm);

//and re-render square as

// black square (or using only ambient component)

glUniform4fv(color_loc, 1, black);

glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);

glutSwapBuffers();

}




































































1000

100

010

001

00
1

0

0100

0010

0001

1000

100

010

001

l

l

l

l

l

l

l

z

y

x

z

y

x

M

y

Fog

Fog example

 Fog is atmospheric effect

 Better realism, helps determine distances

Fog

 Fog was part of OpenGL fixed function pipeline

 Programming fixed function fog
 Parameters: Choose fog color, fog model

 Enable: Turn it on

 Fixed function fog deprecated!!

 Shaders can implement even better fog

 Shaders implementation: fog applied in fragment
shader just before display

Rendering Fog
 Mix some color of fog: + color of surface:

 If f = 0.25, output color = 25% fog + 75% surface color

fc sc

]1,0[)1( fff sfp ccc

 f computed as function of distance z

 3 ways: linear, exponential, exponential-squared

 Linear:

startend

pend

zz

zz
f






startz

Endz

Pz

Fog Shader Fragment Shader Example

float dist = abs(Position.z);

Float fogFactor = (Fog.maxDist – dist)/

Fog.maxDist – Fog.minDist);

fogFactor = clamp(fogFactor, 0.0, 1.0);

vec3 shadeColor = ambient + diffuse + specular

vec3 color = mix(Fog.color, shadeColor,fogFactor);

FragColor = vec4(color, 1.0);

startend

pend

zz

zz
f






)1(sfp ff ccc 

Fog

 Exponential

 Squared exponential

 Exponential derived from Beer’s law

 Beer’s law: intensity of outgoing light diminishes
exponentially with distance, similar to real life

pf zd
ef



2)(pf zd

ef




Fog Optimizations

 f values for different depths ()can be pre-computed
and stored in a table on GPU

 Distances used in f calculations are planar

 Can also use Euclidean distance from viewer or radial
distance to create radial fog

Pz

References

 Interactive Computer Graphics (6th edition), Angel
and Shreiner

 Computer Graphics using OpenGL (3rd edition), Hill
and Kelley

 Real Time Rendering by Akenine-Moller, Haines and
Hoffman

