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Orthographic Projection

e How? Draw parallel lines from each object vertex
e The projection center is at infinite
e In short, use (x,y) coordinates, just drop z coordinates
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Perspective Projection

e After setting view volume, then projection
transformation

e Projection?
Classic: Converts 3D object to corresponding 2D on screen
How? Draw line from object to projection center

Calculate where each intersects projection plane
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The Problem with Classic Projection

e Keeps (x,y) coordintates for drawing, drops z
e We may need z. Why?

Projectors \

¥ Objectin 3 space

Projected image

% VRP
¥~copr

Xp =X
yp —Y . - L VertexTriangle
ZIO =0 —_— Classic Projection Projection of In 3D

Loses z value Triangle in 2D




Normalization: Keeps z Value -

e Most graphics systems use view normalization

e Normalization: convert all other projection types to
orthogonal projections with the default view volume

Perspective transform
matrix

—

% Default view volume
/ Clipping against it

Ortho transform
matrix




Parallel Projection

e normalization = find 4x4 matrix to transform user-specified
view volume to canonical view volume (cube)
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Parallel Projection: Ortho

e Parallel projection: 2 parts

1. Translation: centers view volume at origin
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Parallel Projection: Ortho :

2. Scaling: reduces user-selected cuboid to canonical
cube (dimension 2, centered at origin)
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Parallel Projection: Ortho

e Translation lines up midpoints: E.g. midpoint of x = (right + left)/2
e Thus translation factors:

-(right + left)/2, -(top + bottom)/2, -(far+near)/2
e Translation matrix:
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Parallel Projection: Ortho :

e Scaling factor: ratio of ortho view volume to cube dimensions
e Scaling factors: 2/(right - left), 2/(top - bottom), 2/(far - near)
e Scaling Matrix M2:
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Parallel Projection: Ortho

Concatenating Translation x Scaling, we get Ortho Projection matrix
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Final Ortho Projection

e Setz=0

e Equivalent to the homogeneous coordinate
transformation
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e Hence, general orthogonal projection in 4D is
P=M_4ST
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