
Computer Graphics (CS 543)
Lecture 7b: Intro to lighting, Shading

and Materials
+ Phong Lighting Model

Prof Emmanuel Agu

Computer Science Dept.

Worcester Polytechnic Institute (WPI)

Why do we need Lighting & shading?

 Has visual cues for humans (shape, light position, viewer
position, surface orientation, material properties, etc)

Sphere without

lighting & shading

Sphere with

lighting & shading

What Causes Shading?

 Shading caused by different angles with light, camera
at different points

Lighting?

 Lighting problem: Calculate surface color based on angle
of surface with light, viewer

 Programmer writes vertex shader code to calculate
lighting at vertices!

 Equation for lighting calculation = lighting model

1. Light attributes:

intensity, color, position,

direction, shape 2. Surface attributes

color, reflectivity,

transparency, etc

3. Interaction

between lights and objects

Shading?
 After triangle is rasterized (converted to pixels)

 Per-vertex lighting calculation means color at vertices is
accurate, known (red dots)

 Shading: Graphics hardware figures out color of interior
pixels (blue dots)

 How? Assume linear change => interpolate

Shading
(done in hardware
during rasterization)

Rasterization
Find pixels belonging
to each object

Lighting
(calc at vertices
in vertex shader)

Global Illumination (Lighting) Model

 Global illumination: model interaction of light from
all surfaces in scene (track multiple bounces)

translucent surface

shadow

multiple reflection

 The infinite reflection, scattering and absorption of light is
described by the rendering equation
 Includes many effects (Reflection, Shadows, etc)

 Mathematical basis for all global illumination algorithms

 Lo is outgoing radiance

 Li incident radiance

 Le emitted radiance,

 fr is bidirectional reflectance distribution function (BRDF)

 Fraction of incident light reflected by a surface

    


 
dnxLixLL xfreo))(,(,(),,(

Rendering Equation

Li
Lo

fr Le

Local Illumination (Lighting) Model
 One bounce!

 Doesn’t track inter-reflections, transmissions (e.g. OpenGL)

 Global Illumination (GI) is accurate, looks real
 But raster graphics pipeline (e.g. OpenGL) renders each

polygon independently (local rendering), no GI

q

Light Sources

 General light sources are difficult to model (e.g. light bulb)

 Why? We must compute effect of light coming from all

points on light source

Light Sources Abstractions

 We generally use simpler light sources

 Abstractions that are easier to model

Point light Directional light

Area lightSpot light

Light intensity can be
independent or
dependent of the
distance between object
and the light source

 White light strikes object, some wavelengths (colors)
absorbed, some reflected

 Fraction reflected determines object color and
brightness
 Example: A surface looks red under white light because red

component of light is reflected, other wavelengths absorbed

Light-Material Interaction

Phong Model

 Simple lighting model that can be computed quickly

 3 components

 Diffuse

 Specular

 Ambient

 Compute each component separately

 Vertex Illumination =

ambient + diffuse + specular

 Materials reflect each component differently

Phong Model

 Compute lighting (components) at each vertex (P)

 Uses 4 vectors, from vertex

 To light source (l)

 To viewer (v)

 Normal (n)

 Mirror direction (r)

Mirror Direction?

 Angle of reflection = angle of incidence

 Normal is determined by surface orientation

r = 2 (l · n) n - l

Surface Roughness

 Smooth surfaces: more reflected light concentrated in
mirror direction

 Rough surfaces: reflects light in all directions

smooth surface rough surface

Diffuse Lighting Example

Diffuse Light Calculation

 How much light received from light source?

 Based on Lambert’s Law

Receive more light Receive less light

Diffuse Light Reflected

 Illumination surface received from light source, reflected
equally in all directions

Eye position does not matter

Diffuse Light Calculation

 Lambert’s law: radiant energy D a small surface patch
receives from a light source is:

D = I x kD cos (q)
 I: light intensity

 q: angle between light vector and surface normal

 kD: Diffuse reflection coefficient.

Controls how much diffuse light surface reflects

N : surface normal
light vector
(from object
to light)

q

Specular light example

Specular?

Bright spot

on object

Specular light contribution

 Incoming light reflected out in small surface area

 Specular depends on viewer position relative

to mirror direction

 Specular bright in mirror direction

 Drops off away from mirror direction

Away from mirror direction
A little specular

Mirror direction:
lots of specular

specular

highlight

Specular light calculation

  is deviation of view angle from mirror direction

 Small  = more specular

q

p

 Mirror direction

Is = ks I cosa

shininess

coef

Absorption

coef

incoming intensity

reflected

intensity

The Shininess Coefficient, a

 a controls falloff sharpness

 High a  sharper falloff = small, bright highlight

 Low a  slow falloff = large, dull highlight

 a between 100 and 200 = metals

 a between 5 and 10 = plastic look

cosa 

 90-90

Specular light: Effect of ‘α’

α = 10 α = 90

α = 270
α = 30

Is = ks I cosa

Ambient Light Contribution

 Very simple approximation of global illumination

(Lump 2nd, 3rd, 4th, …. etc bounce into single term)

 Assume to be a constant

 No direction!

 Independent of light position, object orientation, observer’s
position or orientation

object 1

object 2object 3

object 4

Ambient = Ia x Ka constant

Ambient Light Example

Ambient: background light,
scattered by environment

Light Attentuation with Distance

 Light reaching a surface inversely proportional to
square of distance d

 We can multiply by factor

of form 1/(ad + bd +cd2) to

diffuse and specular terms

Adding up the Components

 Adding all components (no attentuation term) ,
phong model for each light source can be written as

diffuse + specular + ambient

I = kd Id cosq + ks Is cos a + ka Ia

= kd Id (l · n) + ks Is (v · r)a + ka Ia

 Note:

 cosq = l · n

 cos = v · r

q


Separate RGB Components
 Can separate red, green and blue components. Instead of:

I = kd Id (l · n) + ks Is (v · r)a + ka Ia

 We computing lighting for RGB colors separately

Ir = kdr Idr l · n + ksr Isr (v · r)a + kar Iar

Ig = kdg Idg l · n + ksg Isg (v · r)a + kag Iag

Ib = kdb Idb l · n + ksb Isb (v · r)a + kab Iab

 Above equation is just for one light source!!

 For N lights, repeat calculation for each light

Total illumination for a point P = S (Lighting for all lights)

Red

Green

Blue

Coefficients for Real Materials

Material Ambient

Kar, Kag,kab

Diffuse

Kdr, Kdg,kdb

Specular

Ksr, Ksg,ksb
Exponent, a

Black
plastic

0.0

0.0

0.0

0.01

0.01

0.01

0.5

0.5

0.5

32

Brass 0.329412

0.223529

0.027451

0.780392

0.568627

0.113725

0.992157

0.941176

0.807843

27.8974

Polished

Silver

0.23125

0.23125

0.23125

0.2775

0.2775

0.2775

0.773911

0.773911

0.773911

89.6

Figure 8.17, Hill, courtesy of McReynolds and Blythe

Modified Phong Model

I = kd Id l · n + ks Is (v · r)a + ka Ia

I = kd Id l · n + ks Is (n · h) b + ka Ia

 Blinn proposed using halfway vector, more efficient

 h is normalized vector halfway between l and v

 Similar results as original Phong

h = (l + v)/ | l + v |

Used in

OpenGL

References

 Interactive Computer Graphics (6th edition), Angel
and Shreiner

 Computer Graphics using OpenGL (3rd edition), Hill
and Kelley

