
Computer Graphics (CS 543) 
Lecture 2 (Part 2): Fractals

Prof Emmanuel Agu

Computer Science Dept.

Worcester Polytechnic Institute (WPI)



What are Fractals?

 Mathematical expressions to generate pretty pictures

 Evaluate math functions to create drawings
 approach infinity -> converge to image

 Utilizes recursion on computers

 Popularized by Benoit Mandelbrot (Yale university)

 Dimensional:

 Line is 1-dimensional

 Plane is 2-dimensional

 Defined in terms of self-similarity



Fractals: Self-similarity

 See similar sub-images within image as we zoom in

 Example: surface roughness or profile same as we zoom in



Applications of Fractals

 Clouds

 Grass

 Fire

 Modeling mountains (terrain)

 Coastline

 Branches of a tree

 Surface of a sponge

 Cracks in the pavement

 Designing antennae (www.fractenna.com)



Example: Mandelbrot Set



Example: Fractal Terrain

Courtesy: Mountain 3D 

Fractal Terrain software



Application: Fractal Art

Courtesy: Internet 

Fractal Art Contest



Recall: Sierpinski Gasket Program

 Popular fractal



Koch Curves

 Discovered in 1904 by Helge von Koch

 Start with straight line of length 1

 Recursively:

 Divide line into 3 equal parts

 Replace middle section with triangular bump, sides of  length 1/3

 New length = 4/3



Koch Snowflakes

S3, S4, S5,

Can form Koch snowflake by joining three Koch curves



Koch Snowflakes

Pseudocode, to draw Kn:

If (n equals 0) draw straight line

Else{

Draw Kn-1

Turn left 60°

Draw Kn-1

Turn right 120°

Draw Kn-1

Turn left 60°

Draw Kn-1
}



L-Systems: Lindenmayer Systems

 Express complex curves as simple set of string-production rules

 Example rules:

 ‘F’: go forward a distance 1 in current direction

 ‘+’: turn right through angle A degrees

 ‘-’: turn left through angle A degrees

 Using these rules, can express koch curve as: “F-F++F-F”

 Angle A = 60 degrees



L-Systems: Koch Curves

 Rule for Koch curves is F -> F-F++F-F

 Means each iteration replaces every ‘F’ occurrence with “F-F++F-F”

 So, if initial string (called the atom) is ‘F’, then

 S1 =“F-F++F-F”

 S2 =“F-F++F-F- F-F++F-F++ F-F++F-F- F-F++F-F”

 S3 = …..

 Gets very large quickly



Hilbert Curve

 Discovered by German Scientist, David Hilbert in late 1900s

 Space filling curve

 Drawn by connecting centers of 4 sub-squares, make up  larger 
square. 

 Iteration 0: 3 segments connect 4 centers in upside-down U

Iteration 0



Hilbert Curve: Iteration 1

 Each of 4 squares divided into 4 more squares

 U shape shrunk to half its original size, copied into 4 sectors

 In top left, simply copied, top right: it's flipped vertically

 In the bottom left, rotated 90 degrees clockwise,

 Bottom right, rotated 90 degrees counter-clockwise. 

 4 pieces connected with 3 segments, each of which is same 
size as the shrunken pieces of the U shape (in red)



Hilbert Curve: Iteration 2

 Each of the 16 squares from iteration 1 divided into 4 squares

 Shape from iteration 1 shrunk and copied. 

 3 connecting segments (shown in red) are added to complete 
the curve. 

 Implementation? Recursion is your friend!!



Gingerbread Man

 Each new point q is formed from previous point p using the 
equation

 For 640 x 480 display area, use constants

M = 40    L = 3

 A good starting point p is (115, 121)



Iterated Function Systems (IFS)

 Recursively call a function

 Does result converge to an image? What image?

 IFS’s converge to an image

 Examples:

 The Fern

 The Mandelbrot set



The Fern

(0,0)

Function f1 (previous point)

Function f2 (previous point)

Function f3 (previous point)

Function f4 (previous point)

.01

.07

.07

.85

Start at initial

point (0,0). Draw 

dot at (0,0)

Use either f1, f2, f3 or f4 with

probabilities .01, .07,.07,.85

to generate next point

{Ref: Peitgen: Science of Fractals, p.221 ff} {Barnsley & Sloan, 

"A Better way to Compress Images" BYTE, Jan 1988, p.215}



The Fern
Each new point (new.x,new.y) is formed from the prior point (old.x,old.y) 
using the rule: 

new.x := a[index] * old.x + c[index] * old.y + tx[index]; 

new.y := b[index] * old.x + d[index] * old.y + ty[index];

a[1]:= 0.0; b[1] := 0.0; c[1] := 0.0; d[1] := 0.16;

tx[1] := 0.0; ty[1] := 0.0; (i.e values for function f1)

a[2]:= 0.2; b[2] := 0.23; c[2] :=-0.26; d[2] := 0.22; 

tx[2] := 0.0; ty[2] := 1.6; (values for function f2)

a[3]:= -0.15; b[3] := 0.26; c[3] := 0.28; d[3] := 0.24; 

tx[3] := 0.0; ty[3] := 0.44; (values for function f3)

a[4]:= 0.85; b[4] := -0.04; c[4] := 0.04; d[4] := 0.85; 

tx[4] := 0.0; ty[4] := 1.6; (values for function f4)

(0,0)

Function f1

Function f2

Function f3

Function f4

.01

.07

.07

.85



Mandelbrot Set

 Based on iteration theory

 Function of interest:

 Sequence of values (or orbit):

cszf  2)()(

ccccsd

cccsd

ccsd

csd









2222

4

222

3

22

2

2

1

))))((((

)))(((

))((

)(



Mandelbrot Set

 Orbit depends on s and c

 Basic question,:

 For given s and c,

 does function stay finite? (within Mandelbrot set) 

 explode to infinity? (outside Mandelbrot set)

 Definition: if |d| < 1, orbit is finite else inifinite

 Examples orbits:

 s = 0, c = -1, orbit = 0,-1,0,-1,0,-1,0,-1,…..finite

 s = 0, c = 1, orbit = 0,1,2,5,26,677…… explodes



Mandelbrot Set

 Mandelbrot set: use complex numbers for c and s

 Always set s = 0

 Choose c as a complex number

 For example: 

 s = 0, c = 0.2 + 0.5i

 Hence, orbit:

 0,   c,  c2+ c,   (c2+ c)2 + c, ………

 Definition: Mandelbrot set includes all finite orbit c



Mandelbrot Set

 Some complex number math:

 Example:

 Modulus of a complex number, z = ai + b: 

 Squaring a complex number:

1* ii

63*2 ii

22 baz 

ixyyxyix )2()()( 222 

Im

Re

Argand

diagram



Mandelbrot Set

 Examples: Calculate first 3 terms 

 with s=2, c=-1, terms are

 with s = 0, c = -2+i

6318

813

312

2

2

2







  iii

iii

ii

510)2(31

31)2()2(

2)2(0

2

2







ixyyxyix )2()()( 222 



Mandelbrot Set

 Fixed points: Some complex numbers converge 
to certain values after x iterations. 

 Example:

 s = 0, c = -0.2 + 0.5i converges to –0.249227 + 
0.333677i after 80 iterations

 Experiment: square –0.249227 + 0.333677i and add 

-0.2 + 0.5i 

 Mandelbrot set depends on the fact the 
convergence of certain complex numbers



Mandelbrot Set Routine

 Math theory says calculate terms to infinity

 Cannot iterate forever: our program will hang!

 Instead iterate 100 times

 Math theorem: 

 if no term has exceeded 2 after 100 iterations, never will!

 Routine returns:

 100, if modulus doesn’t exceed 2 after 100 iterations

 Number of times iterated before modulus exceeds 2, or

Mandelbrot

function
s, c

Number = 100 (did not explode)

Number < 100 

( first term > 2)



Mandelbrot dwell( ) function

int dwell(double cx, double cy)

{ // return true dwell or Num, whichever is smaller

#define Num 100 // increase this for better pics

double tmp, dx = cx, dy = cy, fsq = cx*cx + cy*cy;

for(int count = 0;count <= Num && fsq <= 4; count++)

{

tmp = dx; // save old real part

dx = dx*dx – dy*dy + cx; // new real part

dy = 2.0 * tmp * dy + cy; // new imag. Part

fsq = dx*dx + dy*dy;

}

return count; // number of iterations used

}

icxycyxiccyix

ixyyxyix

YXYX )2(])[()()(

)2()()(

222

222





])[( 22

Xcyx 

icxy Y )2( 



Mandelbrot Set
 Map real part to x-axis

 Map imaginary part to y-axis

 Decide range of complex numbers to investigate. E.g:

 X in range [-2.25: 0.75],  Y in range [-1.5: 1.5]

(-1.5, 1)Representation 

of  -1.5 + i

Range of complex 

Numbers ( c )
X in range [-2.25: 0.75],  

Y in range [-1.5: 1.5]

Call ortho2D

to set range of 

values to explore



Mandelbrot Set

 Set world window (ortho2D) (range of complex numbers to investigate)

 X in range [-2.25: 0.75],  Y in range [-1.5: 1.5]

 Set viewport (glviewport). E.g:

 Viewport = [V.L, V.R, W, H]= [60,80,380,240]

glViewportortho2D



Mandelbrot Set

 So, for each pixel:

 For each point ( c ) in world window call your dwell( ) function

 Assign color <Red,Green,Blue> based on dwell( ) return value

 Choice of color determines how pretty

 Color assignment:

 Basic: In set (i.e. dwell( ) = 100), color = black, else color = white

 Discrete: Ranges of return values map to same color

 E.g 0 – 20 iterations = color 1

 20 – 40 iterations = color 2, etc.

 Continuous: Use a function

Mandelbrot

function
s, c

Number = 100 (did not explode)

Number < 100 

( first term > 2)



Free Fractal Generating Software

 Fractint

 FracZoom

 3DFrac



References

 Angel and Shreiner, Interactive Computer Graphics, 6th

edition, Chapter 9

 Hill and Kelley, Computer Graphics using OpenGL, 3rd edition, 
Appendix 4


