Computer Graphics (CS 543) Lecture 3 (Part 3): Introduction to Transformations

Prof Emmanuel Agu

Computer Science Dept. Worcester Polytechnic Institute (WPI)

Introduction to Transformations

- May also want to transform objects by changing its:
 - Position (translation)
 - Size (scaling)
 - Orientation (rotation)
 - Shapes (shear)

Translation

• Move each vertex by same distance $d = (d_x, d_y, d_z)$

object

translation: every point displaced by same vector

Scaling

Expand or contract along each axis (fixed point of origin)

$$x'=S_x X$$
 $y'=S_y Y$
 $z'=S_z Z$

where

$$\mathbf{S} = \mathbf{S}(\mathbf{s}_{\mathbf{x}}, \, \mathbf{s}_{\mathbf{y}}, \, \mathbf{s}_{\mathbf{z}})$$

We can transform (translation, scaling, rotation, shearing, etc)
 object by applying matrix multiplications to object vertices

$$\begin{pmatrix} P_x' \\ P_y' \\ P_z' \\ 1 \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_x \\ P_y \\ P_z \\ 1 \end{pmatrix}$$
Transformed Vertex
Transformed Vertex

Transform Matrix

 Note: point (x,y,z) needs to be represented as (x,y,z,1), also called Homogeneous coordinates

Why Matrices?

- Multiple transform matrices can be pre-multiplied
- One final resulting matrix applied (efficient!)
- For example:

transform 1 x transform 2 x transform 3

$$\begin{pmatrix} Q_x \\ Q_y \\ Q_z \\ 1 \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_x \\ P_y \\ P_z \\ 1 \end{pmatrix}$$
 Transform Matrices can Be pre-multiplied

3D Translation Example

• **Example:** If we translate a point (2,2,2) by displacement (2,4,6), new location of point is (4,6,8)

Using matrix multiplication for translation

$$\begin{pmatrix} 4 \\ 6 \\ 8 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 6 \\ 0 & 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 2 \\ 2 \\ 2 \\ 1 \end{pmatrix}$$
Translated

point Translation Matrix

Original point

3D Translation

• Translate object = Move each vertex by same distance $\mathbf{d} = (\mathbf{d}_x, \mathbf{d}_y, \mathbf{d}_z)$

Translate(dx,dy,dz)

Where:

$$x'=x+dx$$

$$y'=y+dy$$

$$z'=z+dz$$

$$\begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & d_x \\ 0 & 1 & 0 & d_y \\ 0 & 0 & 1 & d_z \\ 0 & 0 & 0 & 1 \end{pmatrix} * \begin{pmatrix} x' \\ y \\ z \\ 1 \end{pmatrix}$$

Translation Matrix

Scaling Example

If we scale a point (2,4,6) by scaling factor (0.5,0.5,0.5) Scaled point position = (1, 2, 3)

•Scale z:
$$6 \times 0.5 = 3$$

$$\begin{pmatrix} 1 \\ 2 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 0.5 & 0 & 0 & 0 \\ 0 & 0.5 & 0 & 0 \\ 0 & 0 & 0.5 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 2 \\ 4 \\ 6 \\ 1 \end{pmatrix}$$

Scale Matrix for Scale(0.5, 0.5, 0.5)

Scaling

Scale object = Move each object vertex by scale factor $S = (S_x, S_y, S_z)$ Expand or contract along each axis (relative to origin)

$$x'=S_xX$$

$$y'=S_yY$$

$$z'=S_zZ$$

Using matrix multiplication for scaling

$$\begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} S_x & 0 & 0 & 0 \\ 0 & S_y & 0 & 0 \\ 0 & 0 & S_z & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

Scale Matrix

Shearing

- Y coordinates are unaffected, but x cordinates are translated linearly with y
- That is:

$$x' = x + y * h$$

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & h & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} * \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

■h is fraction of y to be added to x

3D Shear

Reflection

corresponds to negative scale factors

References

- Angel and Shreiner, Chapter 3
- Hill and Kelley, Chapter 5

