Computer Graphics 543 Lecture 4 (Part 1): Rotations and Matrix Concatenation

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Rotating in 3D

- Many degrees of freedom. Rotate about what axis?
- 3D rotation: about a defined axis
- Different transform matrix for:
- Rotation about x-axis
- Rotation about y-axis
- Rotation about z-axis

Rotating in 3D

- New terminology
- X-roll: rotation about x-axis
- Y-roll: rotation about y-axis
- Z-roll: rotation about z-axis
- Which way is +ve rotation
- Look in-ve direction (into +ve arrow)
- CCW is +ve rotation

Rotating in 3D

Rotating in 3D

- For a rotation angle, β about an axis
- Define:

$$
c=\cos (\beta) \quad s=\sin (\beta)
$$

x-roll or (RotateX)

$$
R_{x}(\beta)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & c & -s & 0 \\
0 & s & c & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Rotating in 3D

y-roll (or RotateY) $\quad R_{y}(\beta)=\left(\begin{array}{cccc}c & 0 & s & 0 \\ 0 & 1 & 0 & 0 \\ -s & 0 & c & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$

Rules:
-Write 1 in rotation row, column
-Write 0 in the other rows/columns
-Write c,s in rect pattern

z-roll (or RotateZ)

$$
R_{z}(\beta)=\left(\begin{array}{cccc}
c & -s & 0 & 0 \\
s & c & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Example: Rotating in 3D

Question: Using y-roll equation, rotate $P=(3,1,4)$ by 30 degrees:
Answer: $\mathrm{c}=\cos (30)=0.866, \mathrm{~s}=\sin (30)=0.5$, and

$$
Q=\left(\begin{array}{cccc}
c & 0 & s & 0 \\
0 & 1 & 0 & 0 \\
-s & 0 & c & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
3 \\
1 \\
4 \\
1
\end{array}\right)=\left(\begin{array}{c}
4.6 \\
1 \\
1.964 \\
1
\end{array}\right)
$$

Line 1: $3 . c+1.0+4 . s+1.0$

$$
=3 \times 0.866+4 \times 0.5=4.6
$$

3D Rotation

- Rotate(angle, ux, uy, uz): rotate by angle β about an arbitrary axis (a vector) passing through origin and (ux, uy, uz)
- Note: Angular position of u specified as azimuth/longitude (θ) and latitude (ϕ)

Approach 1: 3D Rotation About Arbitrary Axis

- Can compose arbitrary rotation as combination of:
- X-roll (by an angle β_{1})
- Y-roll (by an angle β_{2})
- Z-roll (by an angle β_{3})

$$
M=R_{z}\left(\beta_{3}\right) R_{y}\left(\beta_{2}\right) R_{x}\left(\beta_{1}\right)
$$

Approach 1: 3D Rotation using Euler Theorem

- Classic: use Euler's theorem
- Euler's theorem: any sequence of rotations = one rotation about some axis
- Want to rotate β about arbitrary axis \mathbf{u} through origin
- Our approach:

1. Use two rotations to align \mathbf{u} and \mathbf{x}-axis
2. Do \boldsymbol{x}-roll through angle $\boldsymbol{\beta}$
3. Negate two previous rotations to de-align \mathbf{u} and \mathbf{x}-axis

Approach 1: 3D Rotation using Euler

Theorem

- Note: Angular position of u specified as azimuth (θ) and latitude (ϕ)
- First try to align \mathbf{u} with x axis

Approach 1: 3D Rotation using Euler Theorem

$R_{y}(\theta)$

Approach 1: 3D Rotation using Euler Theorem

- Step 2: Do z-roll to line up rotation axis with x axis

$$
R_{z}(-\phi) R_{y}(\theta)
$$

Approach 1: 3D Rotation using Euler Theorem

- Remember: Our goal is to do rotation by β around \mathbf{u}
- But axis \mathbf{u} is now lined up with x axis. So,
- Step 3: Do x-roll by β around axis \mathbf{u}

$R_{x}(\beta) R_{z}(-\phi) R_{y}(\theta)$

Approach 1: 3D Rotation using Euler Theorem

- Next 2 steps are to return vector \mathbf{u} to original position
- Step 4: Do z-roll in x-y plane

Approach 1: 3D Rotation using Euler Theorem

- Step 5: Do y-roll to return u to original position

$$
R_{u}(\beta)=R_{y}(-\theta) R_{z}(\phi) R_{x}(\beta) R_{z}(-\phi) R_{y}(\theta)
$$

Approach 2: Rotation using Quaternions

- Extension of imaginary numbers from 2 to 3 dimensions
- Requires 1 real and 3 imaginary components $\mathbf{i}, \mathbf{j}, \mathbf{k}$

$$
q=q_{0}+q_{1} \mathbf{i}+q_{2} \mathbf{j}+q_{3} \mathbf{k}
$$

- Quaternions can express rotations on sphere smoothly and efficiently

Approach 2: Rotation using Quaternions

- Derivation skipped! Check answer
- Solution has lots of symmetry

$$
\begin{gathered}
R(\beta)=\left(\begin{array}{cccc}
c+(1-c) \mathbf{u}_{x}{ }^{2} & (1-c) \mathbf{u}_{y} \mathbf{u}_{x}+s \mathbf{u}_{z} & (1-c) \mathbf{u}_{z} \mathbf{u}_{x}+s \mathbf{u}_{y} & 0 \\
(1-c) \mathbf{u}_{x} \mathbf{u}_{y}+s \mathbf{u}_{z} & c+(1-c) \mathbf{u}_{y}{ }^{2} & (1-c) \mathbf{u}_{z} \mathbf{u}_{y}-s \mathbf{u}_{x} & 0 \\
(1-c) \mathbf{u}_{x} \mathbf{u}_{z}-s \mathbf{u}_{y} & (1-c) \mathbf{u}_{y} \mathbf{u}_{z}-s \mathbf{u}_{x} & c+(1-c) \mathbf{u}_{z}{ }^{2} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
c=\cos (\beta) \quad s=\sin (\beta) \quad \text { Arbitrary axis } \mathbf{u}
\end{gathered}
$$

Inverse Matrices

- Can compute inverse matrices by general formulas
- But some easy inverse transform observations
- Translation: $\mathbf{T}^{-1}\left(d_{x}, d_{y}, d_{z}\right)=\mathbf{T}\left(-d_{x},-d_{y},-d_{z}\right)$
- Scaling: $\mathbf{S}^{-1}\left(s_{x}, s_{y}, s_{z}\right)=\mathbf{S}\left(1 / s_{x}, 1 / s_{y}, 1 / s_{z}\right)$
- Rotation: $\mathbf{R}^{-1}(q)=\mathbf{R}(-q)$
- Holds for any rotation matrix

Instancing

- During modeling, often start with simple object centered at origin, aligned with axis, and unit size
- Can declare one copy of each shape in scene
- E.g. declare 1 mesh for soldier, 500 instances to create army
- Then apply instance transformation to its vertices to

Scale
Orient
Locate

Rotation About Arbitrary Point other than the Origin

- Default rotation matrix is about origin
- How to rotate about any arbitrary point p_{f} (Not origin)?
- Move fixed point to origin $\mathbf{T}\left(-\mathrm{p}_{\mathrm{f}}\right)$
- Rotate $\mathbf{R}(\theta)$
- Move fixed point back $\mathbf{T}\left(p_{f}\right)$

So, $\mathbf{M}=\mathbf{T}\left(p_{f}\right) \mathbf{R}(\theta) \mathbf{T}\left(-p_{f}\right)$

Scale about Arbitrary Center

- Similary, default scaling is about origin
- To scale about arbitrary point $\mathrm{P}=(\mathrm{Px}, \mathrm{Py}, \mathrm{Pz})$ by $(\mathrm{Sx}, \mathrm{Sy}, \mathrm{Sz})$

1. Translate object by $\mathrm{T}(-\mathrm{Px},-\mathrm{Py},-\mathrm{Pz})$ so P coincides with origin
2. Scale object by ($\mathrm{Sx}, \mathrm{Sy}, \mathrm{Sz}$)
3. Translate object back: T(Px, Py, Py)

- In matrix form: $\mathrm{T}(\mathrm{Px}, \mathrm{Py}, \mathrm{Pz})(\mathrm{Sx}, \mathrm{Sy}, \mathrm{Sz}) \mathrm{T}(-\mathrm{Px},-\mathrm{Py},-\mathrm{Pz}) * \mathrm{P}$

$$
\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & P x \\
0 & 1 & 0 & P y \\
0 & 0 & 1 & P z \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
S_{x} & 0 & 0 & 0 \\
0 & S_{y} & 0 & 0 \\
0 & 0 & S_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & -P x \\
0 & 1 & 0 & -P y \\
0 & 0 & 1 & -P z \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right)
$$

Example

- Rotation about z axis by 30 degrees about a fixed point (1.0, 2.0, 3.0)

```
mat 4 m = Identity();
m = Translate(1.0, 2.0, 3.0)*
    Rotate(30.0, 0.0, 0.0, 1.0)*
    Translate(-1.0, -2.0, -3.0);
```

- Remember last matrix specified in program (i.e. translate matrix in example) is first applied

References

- Angel and Shreiner, Chapter 3
- Hill and Kelley, Computer Graphics Using OpenGL, $3^{\text {rd }}$ edition

