
Computer Graphics (CS 543)
Lecture 5: Viewing & Camera Control

Prof Emmanuel Agu

Computer Science Dept.

Worcester Polytechnic Institute (WPI)

3D Viewing?

 Specify a view volume

 Objects inside view volume drawn to viewport (screen)

 Objects outside view volume clipped (not drawn)!

1. Set camera position

2. Set view volume

(3D region of interest)

Different View Volume Shapes

 Different view volume shape => different look

 Foreshortening? Near objects bigger
 Perpective projection has foreshortening

 Orthogonal projection: no foreshortening

x

y

z

x

y

z

Perspective view volume
Orthogonal view volume

 Object positions initially defined in world frame

 World Frame origin at (0,0,0)

 Objects positioned, oriented (translate, scale, rotate
transformations) applied to objects in world frame

The World Frame

World frame

(Origin at 0,0,0)

Camera Frame

 More natural to describe object positions relative to camera (eye)

 Why?
 Our view of the world

 First person shooter games

Camera Frame

 Viewing: After user chooses camera (eye) position, represent objects in
camera frame (origin at eye position)

 Viewing transformation: Converts object (x,y,z) positions in world frame to
positions in camera frame

World frame

(Origin at 0,0,0)

Camera frame

(Origin at camera)

Objects initially

Specified in world frame

More natural to view

Objects in camera frame

Default OpenGL Camera

 Initially Camera at origin: object and camera frames same

 Points in negative z direction

 Default view volume is cube with sides of length 2

clipped out

z=0

2

Default view volume

(objects in volume are seen)

Moving Camera Frame

default frames

Translate objects -5
away from camera

Translate camera +5
away from objects

Same relative distance after
Same result/look

Moving the Camera

 We can move camera using sequence of rotations and
translations

 Example: side view
 Rotate the camera

 Move it away from origin

 Model-view matrix C = TR

// Using mat.h

mat4 t = Translate (0.0, 0.0, -d);

mat4 ry = RotateY(90.0);

mat4 m = t*ry;

Moving the Camera Frame

 Object distances relative to camera determined by the model-
view matrix
 Transforms (scale, translate, rotate) go into modelview matrix

 Camera transforms also go in modelview matrix (CTM)

CTM

Camera

Transforms

Object transforms
(Rotate, Scale

Translate)

The LookAt Function

 Previously, command gluLookAt to position camera

 gluLookAt deprecated!!

 Homegrown mat4 method LookAt() in mat.h

 Sets camera position, transforms object distances to
camera frame

void display(){

………

mat4 mv = LookAt(vec4 eye, vec4 at, vec4 up);

……..

}

Builds 4x4 matrix for positioning, orienting

Camera and puts it into variable mv

The LookAt Function
LookAt(eye, at, up)

Programmer defines:
• eye position
• LookAt point (at) and
• Up vector (Up direction usually (0,1,0))

But Why do we set
Up direction?

Nate Robbins LookAt Demo

What does LookAt do?

 Programmer defines eye, lookAt and Up

 LookAt method:
 Forms new axes (u, v, n) at camera

 Transform objects from world to eye camera frame

World coordinate
Frame

Eye coordinate
Frame

Camera with Arbitrary Orientation and
Position

 Define new axes (u, v, n) at eye
 v points vertically upward,

 n away from the view volume,

 u at right angles to both n and v.

 The camera looks toward -n.

 All vectors are normalized.

World coordinate
Frame (old)

Eye coordinate
Frame (new)

LookAt: Effect of Changing Eye Position or
LookAt Point

 Programmer sets LookAt(eye, at, up)

 If eye, lookAt point changes => u,v,n changes

Viewing Transformation Steps

1. Form camera (u,v,n) frame

2. Transform objects from world frame (Composes matrix to
transform coordinates)

 Next, let’s form camera (u,v,n) frame

world

uv
n

x

y

z

(0,0,0)
lookAt

(1,0,0)(0,1,0)
(0,0,1)

Constructing U,V,N Camera Frame

 Lookat arguments: LookAt(eye, at, up)

 Known: eye position, LookAt Point, up vector

 Derive: new origin and three basis (u,v,n) vectors

eye

Lookat Point

90
o

Eye Coordinate Frame
 New Origin: eye position (that was easy)

 3 basis vectors:

 one is the normal vector (n) of the viewing plane,

 other two (u and v) span the viewing plane

eye
Lookat Point

n

u
v

world origin Remember u,v,n should
be all unit vectors
So… Normalize vectors!!!!!

n is pointing away from the
world because we use left
hand coordinate system

N = eye – Lookat Point
n = N / | N |

(u,v,n should all be orthogonal)

Eye Coordinate Frame

 How about u and v?

eye
Lookat

n

uv
V_up •Derive u first -

•u is a vector that is perp
to the plane spanned by
N and view up vector (V_up)

U = V_up x n

u = U / | U |

Eye Coordinate Frame

 How about v?

To derive v from n and u

v = n x u

v is already normalized

eye
Lookat

n

uv
V_up

Eye Coordinate Frame

 Put it all together

Eye space origin: (Eye.x , Eye.y,Eye.z)

Basis vectors:

n = (eye – Lookat) / | eye – Lookat|
u = (V_up x n) / | V_up x n |
v = n x u

eye
Lookat

n

uv
V_up

Step 2: World to Eye Transformation

 Next, use u, v, n to compose LookAt matrix

 Transformation matrix (Mw2e) ?
 Matrix that transforms a point P in world frame to P’ in eye frame

P’ = Mw2e x P

uv

n

world

x

y

z

P

1. Come up with transformation
sequence that lines up eye frame
with world frame

2. Apply this transform sequence to
point P in reverse order

Eye
frame

World to Eye Transformation

1. Rotate eye frame to “align” it with world frame

2. Translate (-ex, -ey, -ez) to align origin with eye

uv

n

world

x

y

z

(ex,ey,ez)

Rotation: ux uy uz 0
vx vy vz 0
nx ny nz 0
0 0 0 1

Translation: 1 0 0 -ex
0 1 0 -ey
0 0 1 -ez
0 0 0 1

World to Eye Transformation

 Transformation order: apply the transformation to the object in
reverse order - translation first, and then rotate

Mw2e =

uv

n

world
x

y

z

(ex,ey,ez)

ux uy ux 0 1 0 0 -ex
vx vy vz 0 0 1 0 -ey
nx ny nz 0 0 0 1 -ez
0 0 0 1 0 0 0 1

ux uy uz -e . u
vx vy vz -e . v
nx ny nz -e . n
0 0 0 1

=

Note: e.u = ex.ux + ey.uy + ez.uz

e.v = ex.vx + ey.vy + ez.vz

e.n = ex.nx + ey.ny + ez.nz

Rotation Translation

Multiplied together

= lookAt transform

Order

lookAt Implementation (from mat.h)

mat4 LookAt(const vec4& eye, const vec4& at, const vec4& up)

{

vec4 n = normalize(eye - at);

vec4 u = normalize(cross(up,n));

vec4 v = normalize(cross(n,u));

vec4 t = vec4(0.0, 0.0, 0.0, 1.0);

mat4 c = mat4(u, v, n, t);

return c * Translate(-eye);

}

ux uy uz -e . u
vx vy vz -e . v
nx ny nz -e . n
0 0 0 1

Eye space origin: (Eye.x , Eye.y,Eye.z)

Basis vectors:

n = (eye – Lookat) / | eye – Lookat|
u = (V_up x n) / | V_up x n |
v = n x u

References

 Interactive Computer Graphics, Angel and Shreiner, Chapter 4

 Computer Graphics using OpenGL (3rd edition), Hill and Kelley

