Computer Graphics (CS 543) Lecture 6 (Part 2): Derivation of Orthographic Projection

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Orthographic Projection

- Projection? 2D image of 3D object
- How? Draw parallel lines from each object vertex
- The projection center is at infinite
- In short, use (x, y) coordinates, just drop z coordinates

Perspective Projection

- After setting view volume, then projection transformation
- Projection?
- Classic: Converts 3D object to corresponding 2D on screen
- How? Draw line from object to projection center (eye)
- Calculate where each intersects projection plane

The Problem with Classic Projection

- Keeps (x, y) coordintates for drawing, drops z
- We may need z. Why?

Normalization: Keeps z Value

- Most graphics systems use view normalization
- Normalization: convert all other projection types to orthogonal projections with the default view volume

Perspective transform matrix

Default view volume Clipping against it

Ortho transform matrix

Parallel Projection

- normalization \Rightarrow find 4×4 matrix to transform user-specified view volume to canonical view volume (cube)

Parallel Projection: Ortho

- Parallel projection: 2 parts

1. Translation: centers view volume at origin

Parallel Projection: Ortho

2. Scaling: reduces user-selected cuboid to canonical cube (dimension 2 , centered at origin)
(right,top,-far)

Parallel Projection: Ortho

- Translation lines up midpoints: E.g. midpoint of $x=($ right + left $) / 2$
- Thus translation factors (x, y, z) :

$$
-(\text { right + left) } / 2, \quad-(\text { top }+ \text { bottom }) / 2, \quad-(f a r+\text { near }) / 2
$$

- Translation matrix:

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & -(\text { right }+ \text { left }) / 2 \\
0 & 1 & 0 & -(\text { top }+ \text { bottom }) / 2 \\
0 & 0 & 1 & -(\text { far }+ \text { near }) / 2 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

(right,top,-far)

Parallel Projection: Ortho

- Scaling factor: ratio of ortho view volume to cube dimensions Scaling factors: 2/(right-left), 2/(top-bottom), 2/(far-near) Scaling Matrix M2:

$$
\left(\begin{array}{cccc}
\frac{2}{\text { right-left }} & 0 & 0 & 0 \\
0 & \frac{2}{\text { top-bottom }} & 0 & 0 \\
0 & 0 & \frac{2}{\text { far-near }} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

(right,top,-far)
(left, bottom,-near)

Parallel Projection: Ortho

Concatenating Translation \times Scaling, we get Ortho Projection matrix

$$
\begin{gathered}
\left.\begin{array}{cccc}
\frac{2}{\text { right-left }} & 0 & 0 & 0 \\
0 & \frac{2}{\text { top-bottom }} & 0 & 0 \\
0 & 0 & \frac{2}{\text { far-near }} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \times\left(\begin{array}{cccc}
1 & 0 & 0 & -(\text { right }+ \text { left }) / 2 \\
0 & 1 & 0 & -(\text { top }+ \text { bottom }) / 2 \\
0 & 0 & 1 & -(\text { far }+ \text { near }) / 2 \\
0 & 0 & 0 & 1
\end{array}\right) \\
\mathbf{P}=\mathbf{S T}=\left[\begin{array}{cccc}
\frac{2}{\text { right-left }} & 0 & 0 & -\frac{\text { right-left }}{\text { right }- \text { left }} \\
0 & \frac{2}{\text { top }- \text { bottom }} & 0 & -\frac{\text { top }+ \text { bottom }}{\text { top }- \text { bottom }} \\
0 & 0 & \frac{2}{\text { near }- \text { far }} & \frac{\text { far }+ \text { near }}{\text { far }- \text { near }} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

Final Ortho Projection

- Set $z=0$
- Equivalent to the homogeneous coordinate transformation

$$
\mathbf{M}_{\mathrm{orth}}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- Hence, general orthogonal projection in 4D is

$$
\mathbf{P}=\mathbf{M}_{\text {orth }} \mathbf{S T}
$$

References

- Interactive Computer Graphics ($6^{\text {th }}$ edition), Angel and Shreiner
- Computer Graphics using OpenGL (3 $3^{\text {rd }}$ edition), Hill and Kelley

