
Computer Graphics
CS 543 Lecture 13 (Part 1)

Curves

Prof Emmanuel Agu

Computer Science Dept.

Worcester Polytechnic Institute (WPI)

So Far…

 Dealt with straight lines and flat surfaces

 Real world objects include curves

 Need to develop:

 Representations of curves

 Tools to render curves

Curve Representation: Explicit

 One variable expressed in terms of another

 Example:

 Works if one x-value for each y value

 Example: does not work for a sphere

 Rarely used in CG because of this limitation

),(yxfz

22 yxz

Curve Representation: Implicit

 Represent 2D curve or 3D surface as zeros of a formula

 Example: sphere representation

 May limit classes of functions used

 Polynomial: function which can be expressed as linear
combination of integer powers of x, y, z

 Degree of algebraic function: highest power in function

 Example: mx4 has degree of 4

01222 zyx

Curve Representation: Parametric

 Represent 2D curve as 2 functions, 1 parameter

 3D surface as 3 functions, 2 parameters

 Example: parametric sphere

))(),((uyux

)),(),,(),,((vuzvuyvux

sin),(

sincos),(

coscos),(

z

y

x

Choosing Representations

 Different representation suitable for different
applications

 Implicit representations good for:

 Computing ray intersection with surface

 Determing if point is inside/outside a surface

 Parametric representation good for:

 Dividing surface into small polygonal elements for rendering

 Subdivide into smaller patches

 Sometimes possible to convert one representation
into another

Continuity

 Consider parametric curve

 We would like smoothest curves possible

 Mathematically express smoothness as continuity (no
jumps)

 Defn: if kth derivatives exist, and are continuous,
curve has kth order parametric continuity denoted Ck

TuzuyuxuP))(),(),(()(

Continuity

 0th order means curve is continuous

 1st order means curve tangent vectors vary
continuously, etc

Interactive Curve Design

 Mathematical formula unsuitable for designers

 Prefer to interactively give sequence of points
(control points)

 Write procedure:

 Input: sequence of points

 Output: parametric representation of curve

Interactive Curve Design

 1 approach: curves pass through control points (interpolate)

 Example: Lagrangian Interpolating Polynomial

 Difficulty with this approach:
 Polynomials always have “wiggles”

 For straight lines wiggling is a problem

 Our approach: approximate control points (Bezier, B-Splines)
called De Casteljau’s algorithm

De Casteljau Algorithm

 Consider smooth curve that approximates sequence
of control points [p0,p1,….]

 Blending functions: u and (1 – u) are non-negative
and sum to one

10)1()(uppuup 10 u

De Casteljau Algorithm

 Now consider 3 points

 2 line segments, P0 to P1 and P1 to P2

1001)1()(uppuup
2111)1()(uppuup

De Casteljau Algorithm

)()1()(1101 uuppuup

2

2

10

2))1(2()1(pupuupu

2

02)1()(uub

Blending functions for degree 2 Bezier curve

)1(2)(12 uuub
2

22)(uub

)(02 ub)(12 ub)(22 ub

Substituting known values of and)(01 up)(11 up

Note: blending functions, non-negative, sum to 1

De Casteljau Algorithm

 Extend to 4 control points P0, P1, P2, P3

 Final result above is Bezier curve of degree 3

3

2

2

1

2

0

3))1(3())1(3()1()(upuupuupuup

)(23 ub)(03 ub)(13 ub)(33 ub

De Casteljau Algorithm

 Blending functions are polynomial functions called
Bernstein’s polynomials

3

33

2

23

2

13

3

03

)(

)1(3)(

)1(3)(

)1()(

uub

uuub

uuub

uub

3

2

2

1

2

0

3))1(3())1(3()1()(upuupuupuup

)(23 ub)(03 ub)(13 ub)(33 ub

De Casteljau Algorithm

 Writing coefficient of blending functions gives
Pascal’s triangle

1

4

1

1

1

1

1

2

4

3

6

1 3

1

1

3

2

2

1

2

0

3))1(3())1(3()1()(upuupuupuup

31 3 1

4 control points

3 control points

5 control points

De Casteljau Algorithm

 In general, blending function for k Bezier curve has
form

 Example

iik

ik uu
i

k
ub

)1()(

3003

03)1()1(
0

3
)(uuuub

De Casteljau Algorithm

 Can express cubic parametric curve in matrix
form

3

2

1

0

32],,,1[)(

p

p

p

p

Muuuup B

where

1331

0363

0033

0001

BM

Subdividing Bezier Curves

 OpenGL renders flat objects

 To render curves, approximate with small linear
segments

 Subdivide surface to polygonal patches

 Bezier curves useful for elegant, recursive
subdivision

Subdividing Bezier Curves

 Let (P0… P3) denote original sequence of control points

 Recursively interpolate with u = ½ as below

 Sequences (P00,P01,P02,P03) and (P03,P12,P21,30) define
Bezier curves also

 Bezier Curves can either be straightened or curved recursively
in this way

Bezier Surfaces

 Bezier surfaces: interpolate in two dimensions

 This called Bilinear interpolation

 Example: 4 control points, P00, P01, P10, P11, 2 parameters u
and v

 Interpolate between
 P00 and P01 using u

 P10 and P11 using u

 P00 and P10 using v

 P01 and P11 using v

))1(())1)((1(),(11100100 uppuvuppuvvup

Bezier Surfaces

 Expressing in terms of blending functions

11111101011101000101)()()()()()(),(pubvbpubbvbpubvbvup

Generalizing

3

0

3

0

,3,3,)()(),(
i j

jiji pubvbvup

Problems with Bezier Curves

 Bezier curves are elegant but too many control points

 To achieve smoother curve

 = more control points

 = higher order polynomial

 = more calculations

 Global support problem: All blending functions are
non-zero for all values of u

 All control points contribute to all parts of the curve

 Means after modelling complex surface (e.g. a ship), if
one control point is moves, recalculate everything!

B-Splines

 B-splines designed to address Bezier shortcomings

 B-Spline given by blending control points

 Local support: Each spline contributes in limited range

 Only non-zero splines contribute in a given range of u

m

i

ii puBup
0

)()(

B-spline blending functions, order 2

NURBS

 Encompasses both Bezier curves/surfaces and B-splines

 Non-uniform Rational B-splines (NURBS)

 Rational function is ratio of two polynomials

 Some curves can be expressed as rational functions but not as
simple polynomials

 No known exact polynomial for circle

 Rational parametrization of unit circle on xy-plane:

0)(

1

2
)(

1

1
)(

2

2

2

uz

u

u
uy

u

u
ux

NURBS

 We can apply homogeneous coordinates to bring in w

 Useful property of NURBS: preserved under transformation
 E.g. Rotate sphere defined as NURBS, still a sphere

2

2

1)(

0)(

2)(

1)(

uuw

uz

uuy

uux

Tesselation

 Previously: Pre-generate mesh versions offline

 Tesselation shader unit new to GPU in DirectX 10 (2007)
 Subdivide faces to yield finer detail, generate new vertices, primitives

 Mesh simplification/tesselation on GPU = Real time LoD

 Tesselation: Demo

tesselation

Simplification

Far = Less detailed
mesh

Near = More detailed
mesh

http://www.youtube.com/watch?v=-eTngR6M37Q&feature=related

Tessellation Shaders

 Can subdivide curves, surfaces on the GPU

Where Does Tesselation Shader Fit?

Fixed number of vertices in/out

Can change number of vertices

Geometry Shader

 After Tesselation shader. Can

 Handle whole primitives

 Generate new primitives

 Generate no primitives (cull)

Level of Detail

 Use simpler versions of objects if they make
smaller contributions to the image

 LOD algorithms have three parts:

 Generation: Models of different details are generated

 Selection: Chooses which model should be used
depending on criteria

 Switching: Changing from one model to another

 Can be used for models, textures, shading and
more

Level of Detail

LOD Switching

 Discrete Geometry LODs

 LOD is switched suddenly from one frame to the next

 Blend LODs

 Two LODs are blended together over time

 New LOD is faded by increasing alpha value from 0 to 1

 More expensive than rendering one LOD

 Faded LODs are drawn last to avoid distant objects
drawing over the faded LOD

LOD Switching (cont.)

 Alpha LOD

 Alpha value of object is lowered as distance increases

 Experience is more continuous

 Performance is only felt when object disappears

 Requires sorting of scene based on transparency

LOD Selection

 Determining which LOD to render and which to
blend

 Range-Based:

 LOD choice based on distance

Time-Critical LOD Rendering

 Using LOD to ensure constant frame rates

 Predictive algorithm

 Selects the LOD based on which objects are visible

 Heuristics:

 Maximize

 Constraint:

References

 Hill and Kelley, chapter 11

 Angel and Shreiner, Interactive Computer Graphics,
6th edition, Chapter 10

 Shreiner, OpenGL Programming Guide, 8th edition

