
Computer Graphics (CS 543)
Lecture 1 (Part 1): Introduction to

Computer Graphics

Prof Emmanuel Agu

Computer Science Dept.

Worcester Polytechnic Institute (WPI)

What is Computer Graphics (CG)?

 Computer graphics: algorithms, mathematics, data structures ..…
that computer uses to generate PRETTY PICTURES

 Techniques (e.g. draw a cube, polygon) evolved over years

 Built into programmable libraries (OpenGL, DirectX, etc)

Computer-Generated!
Not a picture!

Photorealistic Vs Real-Time Graphics

• Photo-realistic: E.g ray tracing
Highest quality image possible
slow: may take days to render

• Real Time graphics: E.g. game engine
Milliseconds to render (30 FPS)
Lower image quality

This Class

Not this Class

Uses of Computer Graphics: Entertainment

 Entertainment: games

Courtesy: Super Mario Galaxy 2

Courtesy: Spiderman

Movies

Uses of Computer Graphics

 Image processing:

 alter images, remove noise, super-impose images

Original Image Sobel Filter

Uses of Computer Graphics

Simulators

Courtesy: Evans and Sutherland

Display math functions

E.g matlab

Uses of Computer Graphics

 Scientific analysis and visualization:

Courtesy:

Human Brain Project,
Denmark

2D Vs. 3D

 2-Dimensional (2D)
 Flat

 Objects no notion of distance from viewer

 Only (x,y) color values on screen

 3-Dimensional (3D)
 Objects have distances from viewer

 (x,y,z) values on screen

• This class covers both 2D & 3D!
• Also interaction: Clicking, dragging

About This Course

 Computer Graphics has many aspects
 Computer Scientists create/program graphics tools (e.g. Maya, photoshop)

 Artists use CG tools/packages to create pretty pictures

 Most hobbyists follow artist path. Not much math! E.g. use blender

About This Course

 This Course: Computer Graphics for computer scientists!!!

 Teaches concepts, uses OpenGL as concrete example

 Course is NOT
 just about programming OpenGL

 a comprehensive course in OpenGL. (Only parts of OpenGL covered)

 about using packages like Maya, Photoshop

About This Course

 Class is concerned with:
 How to program computer graphics

 Underlying mathematics, data structures, algorithms

 This course is a lot of work. Requires:
 C/C++, shader programming

 Lots of math, linear algebra, matrices

 We will combine:
 Programmer’s view: Program OpenGL APIs

 Under the hood: Learn OpenGL internals (graphics algorithms, math,
implementation)

Course Text
 Interactive Computer Graphics: A Top-Down Approach with Shader-based

OpenGL by Angel and Shreiner (6th edition), 2012

 Buy 6th edition (pure OpenGL) .…… NOT 7th edition (WebGL)!!!

 Supplementary books available through the WPI library. How?

Syllabus Summary

 3 Exams (50%), 5 Projects (50%)

 Projects:
 Develop OpenGL/GLSL code on any platform, must port to Zoolab machine

 May discuss projects but turn in individual projects

 Class website: http://web.cs.wpi.edu/~emmanuel/courses/cs543/s18/

 Cheating: Immediate ‘F’ in the course
 Note: Using past projects on Internet, gitHub, bitBucket is cheating!

 Advice:
 Come to class

 Read the text

 Understand concepts before coding

Elements of 2D Graphics

 Polylines

 Text

 Filled regions

 Raster images (pictures)

Elements of 2D Graphics

 Polyline: vertices (corners) connected by straight lines

 Attributes: line thickness, color, etc

vertex

Text

 Text attributes: Font, color,
size, spacing, and orientation

 Devices have:
 text mode

 graphics mode.

 Graphics mode: Text is drawn

 Text mode: Text produced by
character generator, not drawn

Filled Regions

 Filled region: shape filled with a color or pattern

 E.g: polygons

Polygons Filled with Color Polygons Filled with Pattern

Raster Images

 Raster image (picture): 2D matrix of pixels (picture elements), in
different colors or grayscale.

Grayscale Image Color Image

Computer Graphics Libraries

 Functions to draw line, circle, image, etc

 Previously device-dependent
 Different OS => different graphics library

 Tedious! Difficult to port (e.g. move program Windows to Linux)

 Error Prone

 Now cross-platform, device-independent libraries
 APIs: OpenGL, DirectX

 Working OpenGL program few changes to move from Windows to
Linux, etc

Graphics Processing Unit (GPU)

 OpenGL implemented on GPU chip/hardware => FAST!!

 Programmable: as shaders

 GPU located either on
 PC motherboard (Intel) or

 Separate graphics card (Nvidia or ATI)

GPU on PC motherboard GPU on separate PCI express card

OpenGL Basics

 OpenGL’s function is Rendering (drawing)

 Rendering? – Convert geometric/mathematical object
descriptions into images

 OpenGL can render (draw):
 2D and 3D

 Geometric primitives (lines, dots, etc)

 Bitmap images (pictures, .bmp, .jpg, etc)

OpenGL

Program OpenGL

GL Utility Toolkit (GLUT)
 OpenGL does NOT manage drawing window

 OpenGL

 Window system independent

 Concerned only with drawing (2D, 3D, images, etc)

 No window management (create, resize, etc), very portable

 GLUT:
 Minimal window management

 Runs on different windowing systems (e.g. Windows, Linux)

 Program that uses GLUT easily ported between windowing systems.

GLUT

OpenGL

GL Utility Toolkit (GLUT)

 No bells and whistles
 No sliders, dialog boxes, elaborate menus, etc

 To add bells and whistles, use system’s API (or GLUI):
 X window system

 Apple: AGL

 Microsoft :WGL, etc

GLUT
(minimal)

Slider Dialog box

OpenGL Basics: Portability

 OpenGL programs behave same on different devices, OS

 Maximal portability

 Display device independent (Monitor type, etc)

 OS independent (Unix, Windows, etc)

 Window system independent based (Windows, X, etc)

 E.g. If student writes OpenGL code on Apple Mac at home, it runs
on Zoolab Windows machines

OpenGL Programming Interface

 Programmer view of OpenGL

 Application Programmer Interface (API)

 Writes OpenGL application programs. E.g

glDrawArrays(GL_LINE_LOOP, 0, N);

glFlush();

Simplified OpenGL Pipeline

 Vertices input, sequence of rendering steps (vertex processor,
clipper, rasterizer, fragment processor) image rendered

 This class: learn graphics rendering steps, algorithms, their order

Vertex
Shader

Fragment
(Pixel)
Shader

Converts
3D to 2D

 To draw a shape, OpenGL colors a corresponding group of pixels
(fragments) called rasterization
 E.g yellow triangle converted to group of pixels to be colored yellow

 Vertex shader code manipulates vertices of shapes

 Fragment shader code manipulates pixels

Vertex Vs Fragment

Vertices Fragments

(pixels)

Converts shape

to pixels (fragments)

OpenGL Program?

 Usually has 3 files:

 .cpp file: containing OpenGL code, main() function
 Does initialization, generates/loads geometry to be drawn

 Vertex shader: manipulates vertices (e.g. move vertices)

 Fragment shader: manipulates pixels/fragments (e.g change
color)

.cpp program

Rendered

Image

Framebuffer

 Dedicated memory location:

 Draw into framebuffer => shows up on screen

 Located either on CPU (software) or GPU (hardware)

References

 Angel and Shreiner, Interactive Computer Graphics (6th

edition), Chapter 1

 Hill and Kelley, Computer Graphics using OpenGL (3rd edition),
Chapter 1

