Computer Graphics (CS 543)
Lecture 1 (Part 1): Introduction to
Computer Graphics

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

What is Computer Graphics (CG)?

e Computer graphics: algorithms, mathematics, data structures
that computer uses to generate PRETTY PICTURES

e Techniques (e.g. draw a cube, polygon) evolved over years
e Built into programmable libraries (OpenGL, DirectX, etc)

A

Computer-Generated!
Not a picture!

Photorealistic Vs Real-Time Graphics

Not this Class

This Class

e Real Time graphics: E.g. game engine
Milliseconds to render (30 FPS)
Lower image quality

e Photo-realistic: E.g ray tracing
Highest quality image possible
slow: may take days to render

Uses of Computer Graphics: Entertainment

e Entertainment: games

Courtesy: Spiderman

Uses of Computer Graphics

e Image processing:

alter images, remove noise, super-impose images

Original Image Sobel Filter

Uses of Computer Graphics

Simulators

Courtesy: Evans and Sutherland

Display math functions
E.g matlab

(Y XY RN
00O O ﬁ
0000000 X
0000000 O

Q
=
2
X @ ¥
? S O
Q
+— (@) m
S5 €&
S c
o S Q
O I Q

Uses of Computer Graphics

e Scientific analysis and visualization:

000
0000
o000
o000
2D Vs. 3D oo
o
e 2-Dimensional (2D) e 3-Dimensional (3D)
e Flat e Objects have distances from viewer
e Objects no notion of distance from viewer e (x,y,z) values on screen

e Only (x,y) color values on screen

e This class covers both 2D & 3D!
e Also interaction: Clicking, dragging

About This Course

e Computer

Graphics has many aspects

e Computer Scientists create/program graphics tools (e.g. Maya, photoshop)

e Artists use CG tools/packages to create pretty pictures

e Most hobbyists follow artist path. Not much math! E.g. use blender

W At 3 B: CADocuments and Settings'Mole A5\ Ny project\delts 0\ s0anes
QMMUNRM Woda Sdact Vesh EdtMesh Prowy Noorels Coloe Cresie U EGRLAS Heb

Trawe C{BE & %R | tezeigr6? ax|{we volacu|{MEGE} B [2 E] ﬁﬁﬁ

Gurass | Curvar | Surtacar | Pobygees | Subcvz | Dafomwion | Animsicn | Dmwscr | Rendeing | Par€fecte | Tom | Flick | Fur | et | rDoh | Cutars Po Nockieg | resbuveckieg | UV |

7“Oll0%N$¢D$ﬁﬂ$‘&ﬂMQ®ER(}”hKE |

«Mgurh?v W Parex
R -

! ! << >

7 L} s » 1" 12 13 “ » 16 i L] AL I I { R
| ! 1 | | 1 | | | 1

About This Course

e This Course: Computer Graphics for computer scientists!!!
e Teaches concepts, uses OpenGL as concrete example
e Courseis NOT

e just about programming OpenGL

e acomprehensive course in OpenGL. (Only parts of OpenGL covered)
e about using packages like Maya, Photoshop

About This Course

e Classis concerned with:
How to program computer graphics
Underlying mathematics, data structures, algorithms

e This course is a lot of work. Requires:
C/C++, shader programming
Lots of math, linear algebra, matrices

e We will combine:

Programmer’s view: Program OpenGL APIs

Under the hood: Learn OpenGL internals (graphics algorithms, math,
implementation)

Course Text o

e Interactive Computer Graphics: A Top-Down Approach with Shader-based
OpenGL by Angel and Shreiner (6th edition), 2012

e Buy 6t edition (pure OpenGL) eeeeeee. NOT 7t edition (WebGL)!!!
INTERACTIVE
COMPUTER INTERACTIVE
GRAPHICS COMPUTER GRAPHICS

WITH SHADER BASED

£DWARD ANGEL « DAVE SHREINER

e Supplementary books available through the WPI library. How?

Syllabus Summary

e 3 Exams (50%), 5 Projects (50%)
e Projects:

Develop OpenGL/GLSL code on any platform, must port to Zoolab machine
May discuss projects but turn in individual projects

e C(Class website: http://web.cs.wpi.edu/~emmanuel/courses/cs543/s18/
e Cheating: Immediate ‘F’ in the course
Note: Using past projects on Internet, gitHub, bitBucket is cheating!

e Advice:
Come to class
Read the text
Understand concepts before coding

Elements of 2D Graphics

e Polylines

e Text

e Filled regions

e Raster images (pictures)

Elements of 2D Graphics

e Polyline: vertices (corners) connected by straight lines
e Attributes: line thickness, color, etc

7

vertex

00
[X J
Text
Text attributes: Font, color,
size, spacing, and orientation Big Text
Little Text
Devices have: Shadow Text
text mode A=Y
graphics mode.
Rotated TexOutlined text

Graphics mode: Text is drawn

Text mode: Text produced by SMALLCAPS
character generator, not drawn

Filled Regions

e Filled region: shape filled with a color or pattern

e E.g: polygons

Polygons Filled with Color Polygons Filled with Pattern

Raster Images :

e Raster image (picture): 2D matrix of pixels (picture elements), in
different colors or grayscale.

Grayscale Image Color Image

Computer Graphics Libraries

e Functions to draw line, circle, image, etc

e Previously device-dependent
e Different OS => different graphics library
e Tedious! Difficult to port (e.g. move program Windows to Linux)

e Error Prone

e Now cross-platform, device-independent libraries
e APIs: OpenGl, DirectX

e Working OpenGL program few changes to move from Windows to
Linux, etc

eoes
. . . (X N J
Graphics Processing Unit (GPU) 0eo
o
e OpenGL implemented on GPU chip/hardware => FAST!!

e Programmable: as shaders
e GPU located either on

e PC motherboard (Intel) or
e Separate graphics card (Nvidia or ATI)

GPU on PC motherboard GPU on separate PCl express card

OpenGL Basics

e OpenGLl’s function is Rendering (drawing)

e Rendering? — Convert geometric/mathematical object
descriptions into images

e OpenGL can render (draw):
2D and 3D
Geometric primitives (lines, dots, etc)

Bitmap images (pictures, .bmp, .jpg, etc)

OpenGL
Program

E— OpenGL

GL Utility Toolkit (GLUT)

e OpenGL does NOT manage drawing window

e OpenGL

Window system independent

Concerned only with drawing (2D, 3D, images, etc)
No window management (create, resize, etc), very portable

o GLUT:
Minimal window management
Runs on different windowing systems (e.g. Windows, Linux)
Program that uses GLUT easily ported between windowing systems.

GLUT

OpenGL

GL Utility Toolkit (GLUT)

e No bells and whistles
No sliders, dialog boxes, elaborate menus, etc

e To add bells and whistles, use system’s API (or GLUI):

X window system
Apple: AGL
Microsoft :WGL, etc

Select MetWare Logon

(minimal) Fle Edit Help

Slider Dialog box

OpenGL Basics: Portability

e OpenGL programs behave same on different devices, OS

e Maximal portability
Display device independent (Monitor type, etc)
OS independent (Unix, Windows, etc)

Window system independent based (Windows, X, etc)

e E.g.If student writes OpenGL code on Apple Mac at home, it runs
on Zoolab Windows machines

OpenGL Programming Interface o

e Programmer view of OpenGL
e Application Programmer Interface (API)
e Writes OpenGL application programs. E.g

glDrawArrays (GL LINE LOOP, 0, N);

g 1 FlUSh() ;
Application Graphics -
rogram library Hardware ~——— @ Mouse
;ﬁ‘ i (API)
Il CRT

Simplified OpenGL Pipeline

e Vertices input, sequence of rendering steps (vertex processor,
clipper, rasterizer, fragment processor) image rendered

e This class: learn graphics rendering steps, algorithms, their order

Vertices— Vertex — 'C;l.ipper and —® Rasterizer — Fragment —p Pixels '
processor primitive assembler processor
Vertex Converts Fragment
Shader 3D to 2D (Pixel)

Shader

Vertex Vs Fragment

e To draw a shape, OpenGL colors a corresponding group of pixels
(fragments) called rasterization

E.g yellow triangle converted to group of pixels to be colored yellow

e Vertex shader code manipulates vertices of shapes
e Fragment shader code manipulates pixels

[- F t
Vertex | Clipper and Raslerizar ragmen

processor primitive assembler processor

\
\\
f S
\
\/ Converts shape \

: to pixels (fragments)
Vertices Fragments

(pixels)

OpenGL Program?

e Usually has 3 files:
e .cpp file: containing OpenGL code, main() function

Does initialization, generates/loads geometry to be drawn
e Vertex shader: manipulates vertices (e.g. move vertices)

e Fragment shader: manipulates pixels/fragments (e.g change
color)

Vertex Shader | | £ Fragment
/ ml §! B Shader §
) void main() { = void main() { g
-Cp p prog ram —’ gl_Position = vecd(...); D) gl_FragColor = vec4(...); E‘:

gl_PointSize = 10.0; 0)
} -1 € ™
........... o, SO (.
= Rendered

Image

Framebuffer

e Dedicated memory location:

Draw into framebuffer => shows up on screen
Located either on CPU (software) or GPU (hardware)

References

e Angel and Shreiner, Interactive Computer Graphics (6t
edition), Chapter 1

e Hill and Kelley, Computer Graphics using OpenGL (3" edition),
Chapter 1

