Computer Graphics (CS 543) Lecture 2c: Fractals

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

What are Fractals?

- Mathematical expressions to generate pretty pictures
- Evaluate math functions to create drawings
- approach infinity -> converge to image
- Utilizes recursion on computers
- Popularized by Benoit Mandelbrot (Yale university)
- Dimensional:
- Line is 1-dimensional
- Plane is 2-dimensional
- Defined in terms of self-similarity

Fractals: Self-similarity

- See similar sub-images within image as we zoom in
- Example: surface roughness or profile same as we zoom in

Applications of Fractals

Fire

- Other applications:
- Mountains
- Branches of a tree
- Surface of a sponge
- Cracks in the pavement
- Designing antennae (www.fractenna.com)

Clouds

Example: Mandelbrot Set

:::

Example: Fractal Terrain

Courtesy: Mountain 3D
Fractal Terrain software

Application: Fractal Art

Courtesy: Internet
Fractal Art Contest

Recall: Sierpinski Gasket Program

- Popular fractal

Koch Curves

- Discovered in 1904 by Helge von Koch
- Start with straight line of length 1
- Recursively:
- Divide line into 3 equal parts
- Replace middle section with triangular bump, sides of length $1 / 3$
- New length $=4 / 3$

Koch Snowflakes

Can form Koch snowflake by joining three Koch curves

Koch Snowflakes

Pseudocode, to draw K_{n} :
If (n equals 0) draw straight line Else\{

Draw K_{n-1}
Turn left 60°
Draw K_{n-1}
Turn right 120°
Draw K_{n-1}

Turn left 60°
Draw K_{n-1}

L-Systems: Lindenmayer Systems

- Express complex curves as simple set of string-production rules
- Example rules:
- ' F ': go forward a distance 1 in current direction
- ' + ': turn right through angle \boldsymbol{A} degrees
- '-': turn left through angle \boldsymbol{A} degrees
- Using these rules, can express koch curve as: "F-F++F-F"
- Angle $\boldsymbol{A}=60$ degrees

L-Systems: Koch Curves

- Rule for Koch curves is F -> F-F++F-F
- Means each iteration replaces every ' F ' occurrence with " $F-F++F-F$ "
- So, if initial string (called the atom) is ' F ', then
- $S_{1}=" F-F++F-F "$
- $\mathrm{S}_{2}=" \mathrm{~F}-\mathrm{F}++\mathrm{F}-\mathrm{F}-\mathrm{F}-\mathrm{F}++\mathrm{F}-\mathrm{F}++\mathrm{F}-\mathrm{F}++\mathrm{F}-\mathrm{F}-\mathrm{F}-\mathrm{F}++\mathrm{F}-\mathrm{F} "$
- $\mathrm{S}_{3}=\ldots .$.
- Gets very large quickly

Hilbert Curve

- Discovered by German Scientist, David Hilbert in late 1900s
- Space filling curve
- Drawn by connecting centers of 4 sub-squares, make up larger square.
- Iteration 0: 3 segments connect 4 centers in upside-down U

Iteration 0

Hilbert Curve: Iteration 1

- Each of 4 squares divided into 4 more squares
- U shape shrunk to half its original size, copied into 4 sectors
- In top left, simply copied, top right: it's flipped vertically
- In the bottom left, rotated 90 degrees clockwise,
- Bottom right, rotated 90 degrees counter-clockwise.
- 4 pieces connected with 3 segments, each of which is same size as the shrunken pieces of the U shape (in red)

Hilbert Curve: Iteration 2

- Each of the 16 squares from iteration 1 divided into 4 squares
- Shape from iteration 1 shrunk and copied.
- 3 connecting segments (shown in red) are added to complete the curve.
- Implementation? Recursion is your friend!!

Gingerbread Man

- Each new point \mathbf{q} is formed from previous point \mathbf{p} using the equation
$q \cdot x=M(1+2 L)-p \cdot y+|p \cdot x-L M| ;$
$q \cdot y=p \cdot x$.
- For 640×480 display area, use constants
$M=40 \quad L=3$
- A good starting point \mathbf{p} is $(115,121)$

Iterated Function Systems (IFS)

- Recursively call a function
- Does result converge to an image? What image?
- IFS's converge to an image
- Examples:
- The Fern
- The Mandelbrot set

The Fern

Use either $\mathfrak{f 1}, \mathfrak{f} 2, \mathfrak{f} 3$ or f 4 with probabilities .01, .07,.07,. 85
to generate next point

\{Ref: Peitgen: Science of Fractals, p. 221 ff$\}$ \{Barnsley \& Sloan, "A Better way to Compress Images" BYTE, Jan 1988, p.215\}

The Fern

Each new point (new.x,new.y) is formed from the prior point (old.x,old.y) using the rule:

$$
\begin{aligned}
& \text { new.x := a[index] * old.x + c[index] * old.y + tx[index]; } \\
& \text { new.y }:=b[\text { index] * old.x + d[index] * old. } y+\text { ty[index]; } \\
& a[1]:=0.0 ; b[1]:=0.0 ; c[1]:=0.0 ; d[1]:=0.16 ; \\
& \operatorname{tx[1]:=0.0;~ty[1]:=0.0;~(i.e~values~for~function~f1)~} \\
& a[2]:=0.2 ; b[2]:=0.23 ; c[2]:=-0.26 ; d[2]:=0.22 ; \\
& \operatorname{tx}[2]:=0.0 ; \operatorname{ty}[2]:=1.6 ;(\text { values for function f2) } \\
& a[3]:=-0.15 ; b[3]:=0.26 ; c[3]:=0.28 ; d[3]:=0.24 ; \\
& \operatorname{tx}[3]:=0.0 ; \operatorname{ty}[3]:=0.44 ; \text { (values for function f3) } \\
& a[4]:=0.85 ; b[4]:=-0.04 ; c[4]:=0.04 ; d[4]:=0.85 ; \\
& \operatorname{tx}[4]:=0.0 ; \operatorname{ty}[4]:=1.6 ;(\text { values for function } f 4)
\end{aligned}
$$

Mandelbrot Set

- Based on iteration theory
- Function of interest:

$$
f(z)=(s)^{2}+c
$$

- Sequence of values (or orbit):

$$
\begin{aligned}
& d_{1}=(s)^{2}+c \\
& d_{2}=\left((s)^{2}+c\right)^{2}+c \\
& d_{3}=\left(\left((s)^{2}+c\right)^{2}+c\right)^{2}+c \\
& d_{4}=\left(\left(\left((s)^{2}+c\right)^{2}+c\right)^{2}+c\right)^{2}+c
\end{aligned}
$$

Mandelbrot Set

- Orbit depends on s and c
- Basic question,:
- For given s and c,
- does function stay finite? (within Mandelbrot set)
- explode to infinity? (outside Mandelbrot set)
- Definition: if $|d|<1$, orbit is finite else inifinite
- Examples orbits:
- $s=0, c=-1$, orbit $=0,-1,0,-1,0,-1,0,-1, \ldots .$. finite
- $s=0, c=1$, orbit $=0,1,2,5,26,677 \ldots \ldots$. explodes

Mandelbrot Set

- Mandelbrot set: use complex numbers for c and s
- Always set $s=0$
- Choose c as a complex number
- For example:
- $s=0, c=0.2+0.5 \mathrm{i}$
- Hence, orbit:
- $0, c, c^{2}+c, \quad\left(c^{2}+c\right)^{2}+c, \ldots \ldots .$.
- Definition: Mandelbrot set includes all finite orbit c

Mandelbrot Set

- Some complex number math:

$$
i * i=-1
$$

- Example:

$$
2 i * 3 i=-6
$$

Mandelbrot Set

- Examples: Calculate first 3 terms
- with $s=2, c=-1$, terms are

$$
\begin{aligned}
& 2^{2}-1=3 \\
& 3^{2}-1=8 \\
& 8^{2}-1=63
\end{aligned}
$$

- with $s=0, c=-2+i$

$$
(x+y i)^{2}=\left(x^{2}-y^{2}\right)+(2 x y) i
$$

$$
\begin{aligned}
& 0+(-2+i)=-2+i \\
& (-2+i)^{2}+(-2+i)=1-3 i \\
& (1-3 i)^{2}+(-2+i)=-10-5 i
\end{aligned}
$$

Mandelbrot Set

- Fixed points: Some complex numbers converge to certain values after x iterations.
- Example:
- $s=0, c=-0.2+0.5 i$ converges to $-0.249227+$ 0.333677 i after 80 iterations
- Experiment: square $-0.249227+0.333677 i$ and add $-0.2+0.5 i$
- Mandelbrot set depends on the fact the convergence of certain complex numbers

Mandelbrot Set Routine

- Math theory says calculate terms to infinity
- Cannot iterate forever: our program will hang!
- Instead iterate 100 times
- Math theorem:
- if no term has exceeded 2 after 100 iterations, never will!
- Routine returns:
- 100 , if modulus doesn't exceed 2 after 100 iterations
- Number of times iterated before modulus exceeds 2 , or

Mandelbrot dwell() function

$$
\begin{aligned}
& (x+y i)^{2}=\left(x^{2}-y^{2}\right)+(2 x y) i \\
& (x+y i)^{2}+\left(c_{X}+c_{Y} i\right)=\left[\left(x^{2}-y^{2}\right)+c_{X}\right]+\left(2 x y+c_{Y}\right) i
\end{aligned}
$$

```
int dwell(double cx, double cy)
{ // return true dwell or Num, whichever is smaller
    #define Num 100 // increase this for better pics
    double tmp, dx = cx, dy = cy, fsq = cx*cx + cy*cy;
    for(int count = 0;count <= Num && fsq <= 4; count++)
    {
```

```
tmp = dx; // save old real part
```

tmp = dx; // save old real part
dx = dx*dx - dy*dy + cx; // new real part [(}\mp@subsup{x}{}{2}-\mp@subsup{y}{}{2})+\mp@subsup{c}{X}{}
dx = dx*dx - dy*dy + cx; // new real part [(}\mp@subsup{x}{}{2}-\mp@subsup{y}{}{2})+\mp@subsup{c}{X}{}
dy = 2.0 * tmp * dy + cy; // new imag. Part (2xy+c
dy = 2.0 * tmp * dy + cy; // new imag. Part (2xy+c
fsq = dx*dx + dy*dy;
fsq = dx*dx + dy*dy;
}
return count; // number of iterations used
}

```

\section*{Mandelbrot Set}
- Map real part to x-axis
- Map imaginary part to y-axis
- Decide range of complex numbers to investigate. E.g:
- \(\quad X\) in range [-2.25: 0.75 ], \(Y\) in range [-1.5: 1.5]


\section*{Mandelbrot Set}
- Set world window (ortho2D) (range of complex numbers to investigate)
- \(\quad \mathrm{X}\) in range [-2.25: 0.75], Y in range [-1.5: 1.5]
- Set viewport (glviewport). E.g:
- Viewport \(=[V . L\), V.R, W, H] \(=[60,80,380,240]\)


\section*{Mandelbrot Set}
- So, for each pixel:
- For each point ( c ) in world window call your dwell( ) function
- Assign color <Red,Green,Blue> based on dwell( ) return value
- Choice of color determines how pretty
- Color assignment:
- Basic: In set (i.e. dwell( ) = 100), color = black, else color = white
- Discrete: Ranges of return values map to same color
- E.g 0-20 iterations = color 1
- 20-40 iterations = color 2 , etc.
- Continuous: Use a function


\section*{Free Fractal Generating Software}
- Fractint
- FracZoom
- 3DFrac

\section*{References}
- Angel and Shreiner, Interactive Computer Graphics, \(6{ }^{\text {th }}\) edition, Chapter 9
- Hill and Kelley, Computer Graphics using OpenGL, \(3^{\text {rd }}\) edition, Appendix 4```

