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Points, Scalars and Vectors

 Points, vectors defined relative to a coordinate system

 Point: Location in coordinate system

 Example: Point (5,4)

 Cannot add or scale points
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Vectors

 Magnitude

 Direction

 NO position

 Can be added, scaled, rotated

 CG vectors: 2, 3 or 4 dimensions
Length

Angle



Vector-Point Relationship

 Subtract 2 points = vector

v = Q – P

 point + vector = point

P + v = Q
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Vector Operations

 Define vectors
),( 32,1 aaaa

),( 32,1 bbbb ),( 3322,11 bababa ba

Then vector addition:
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Vector Operations

 Define scalar, s

 Scaling vector by a scalar
),,( 321 sasasas a

))(),(),(( 332211 bababa 

ba

Note vector subtraction:
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Vector Operations: Examples

 Scaling vector by a scalar

 For example, if a=(2,5,6) and b=(-2,7,1) and s=6, then

),,( 321 sasasas a

•Vector addition:

),( 3322,11 bababa ba

)7,12,0(),( 3322,11  babababa

)36,30,12(),,( 321  sasasasa



Affine Combination

 Given a vector 

 Affine combination: Sum of all components = 1

 Convex affine = affine + no negative component
i.e
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Magnitude of a Vector

 Magnitude of a

 Normalizing a vector (unit vector)

 Note magnitude of normalized vector = 1. i.e
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Magnitude of a Vector

 Example: if a = (2, 5, 6)

 Magnitude of a

 Normalizing a
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Convex Hull

 Smallest convex object containing P1,P2,…..Pn

 Formed by “shrink wrapping” points



Dot Product (Scalar product)

 Dot product,

 For example, if a=(2,3,1) and b=(0,4,-1)

then

332211 ........ bababad  ba

)11()43()02( ba

111120 



Properties of Dot Products

 Symmetry (or commutative):

 Linearity:

 Homogeneity:
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Angle Between Two Vectors

c
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b
c

 bb  sin,cos bbb 

 cc  sin,cos ccc 

coscbcb 

Sign of b.c:

b.c > 0
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Angle Between Two Vectors

 Problem: Find angle b/w vectors b = (3,4) and c = (5,2)

 Step 1: Find magnitudes of vectors b and c

 Step 2: Normalize vectors b and c 
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Angle Between Two Vectors

 Step 3: Find angle as dot product

 Step 4: Find angle as inverse cosine   
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Standard Unit Vectors

 0,0,1i

Define

 0,1,0j

 1,0,0k

So that any vector,

  kjiv cbacba  ,,
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Cross Product (Vector product)

 
zyx aaa ,,a  

zyx bbb ,,b

If

Then

kjiba )()()( xyyxxzzxyzzy babababababa 

Remember using determinant

zyx

zyx
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kji

Note: a x b is perpendicular to a and b



Cross Product

Note: a x b is perpendicular to both a and b

a x b

a
0

b



Cross Product (Vector product)

 8,1,4b

Then

kjiba )03()824()20( 

Using determinant

Calculate a x b if a = (3,0,2) and b = (4,1,8)

 2,0,3a
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Normal for Triangle using Cross 
Product Method

p0

p1

p2

n

plane n·(p - p0 ) = 0

n = (p2 - p0 ) ×(p1 - p0 ) 

normalize n    n/ |n|

p

Note that right-hand rule determines outward face



Newell Method for Normal Vectors

 Problems with cross product method:

 calculation difficult by hand, tedious

 If 2 vectors almost parallel, cross product is small

 Numerical inaccuracy may result

 Proposed by Martin Newell at Utah (teapot guy)
 Uses formulae, suitable for computer

 Compute during mesh generation

 Robust!
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Newell Method Example

 Example: Find normal of polygon with vertices 

P0 = (6,1,4), P1=(7,0,9) and P2 = (1,1,2)

 Using simple cross product:

((7,0,9)-(6,1,4)) X ((1,1,2)-(6,1,4)) = (2,-23,-5)
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P1
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P1  - P0 P2  - P0



Newell Method for Normal Vectors

 Formulae: Normal N = (mx, my, mz)
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Newell Method for Normal Vectors

 Calculate x component of normal
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Newell Method for Normal Vectors

 Calculate y component of normal
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Newell Method for Normal Vectors

 Calculate z component of normal
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Note: Using Newell method yields same result as 

Cross product method (2,-23,-5)



Finding Vector Reflected From a Surface

 a = original vector

 n = normal vector

 r = reflected vector

 m = projection of a along n

 e = projection of a orthogonal to n
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Θ1 Θ2

Note: Θ1 = Θ2



Forms of Equation of a Line

 Two-dimensional forms of a line
 Explicit: y = mx +h

 Implicit: ax + by +c =0

 Parametric: 

x(a) = ax0 + (1-a)x1

y(a) = ay0 + (1-a)y1

 Parametric form of line
 More robust and general than other forms

 Extends to curves and surfaces
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Convexity

 An object is convex iff for any two points in the 
object all points on the line segment between these 
points are also in the object
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