Computer Graphics (CS 543) Lecture 6c: Derivation of Orthographic Projection

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Orthographic Projection

- How? Draw parallel lines from each object vertex
- The projection center is at infinite
- In short, use (x,y) coordinates, just drop z coordinates

Perspective Projection

- After setting view volume, then projection transformation
- Projection?
 - Classic: Converts 3D object to corresponding 2D on screen
 - How? Draw line from object to projection center
 - Calculate where each intersects projection plane

The Problem with Classic Projection

- Keeps (x,y) coordintates for drawing, drops z
- We may need z. Why?

Normalization: Keeps z Value

- Most graphics systems use view normalization
- Normalization: convert all other projection types to orthogonal projections with the default view volume

Default view volume Clipping against it

 normalization ⇒ find 4x4 matrix to transform user-specified view volume to canonical view volume (cube)

glOrtho(left, right, bottom, top,near, far)

- Parallel projection: 2 parts
 - 1. Translation: centers view volume at origin

 Scaling: reduces user-selected cuboid to canonical cube (dimension 2, centered at origin)

- Translation lines up midpoints: E.g. midpoint of x = (right + left)/2
- Thus translation factors:

Translation matrix:

$$\begin{pmatrix} 1 & 0 & 0 & -(right + left)/2 \\ 0 & 1 & 0 & -(top + bottom)/2 \\ 0 & 0 & 1 & -(far + near)/2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 (right,top,-far) (left, bottom,-near)

- Scaling factor: ratio of ortho view volume to cube dimensions
- Scaling factors: 2/(right left), 2/(top bottom), 2/(far near)
- Scaling Matrix M2:

Concatenating **Translation** x **Scaling**, we get Ortho Projection matrix

$$\begin{pmatrix}
\frac{2}{right-left} & 0 & 0 & 0 \\
0 & \frac{2}{top-bottom} & 0 & 0 \\
0 & 0 & \frac{2}{far-near} & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$X \begin{pmatrix}
1 & 0 & 0 & -(right+left)/2 \\
0 & 1 & 0 & -(top+bottom)/2 \\
0 & 0 & 1 & -(far+near)/2 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\mathbf{P} = \mathbf{ST} = \begin{bmatrix} \frac{2}{right - left} & 0 & 0 & -\frac{right - left}{right - left} \\ 0 & \frac{2}{top - bottom} & 0 & -\frac{top + bottom}{top - bottom} \\ 0 & 0 & \frac{2}{near - far} & \frac{far + near}{far - near} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Final Ortho Projection

- Set z = 0
- Equivalent to the homogeneous coordinate transformation

$$\mathbf{M}_{\text{orth}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• Hence, general orthogonal projection in 4D is $P = M_{orth}ST$

References

- Interactive Computer Graphics (6th edition), Angel and Shreiner
- Computer Graphics using OpenGL (3rd edition), Hill and Kelley