
Computer Graphics
CS 543 Lecture 12c

Polygon Filling & Antialiasing

Prof Emmanuel Agu

Computer Science Dept.

Worcester Polytechnic Institute (WPI)

Defining and Filling Regions of Pixels

 Methods of defining region

 Pixel-defined: specifies pixels in color or geometric
range

 Symbolic: provides property pixels in region must
have

 Examples of symbolic:

 Closeness to some pixel

 Within circle of radius R

 Within a specified polygon

Pixel-Defined Regions

 Definition: Region R is the set of all pixels having
color C that are connected to a given pixel S

 4-adjacent: pixels that lie next to each other
horizontally or vertically, NOT diagonally

 8-adjacent: pixels that lie next to each other
horizontally, vertically OR diagonally

 4-connected: if there is unbroken path of 4-adjacent
pixels connecting them

 8-connected: unbroken path of 8-adjacent pixels
connecting them

Recursive Flood-Fill Algorithm

 Recursive algorithm

 Starts from initial pixel of color, intColor

 Recursively set 4-connected neighbors to newColor

 Flood-Fill: floods region with newColor

 Basic idea:

 start at “seed” pixel (x, y)

 If (x, y) has color intColor, change it to newColor

 Do same recursively for all 4 neighbors

(x, y+1)

(x, y)

(x, y-1)

(x+1, y)(x-1, y

Recursive Flood-Fill Algorithm

 Note: getPixel(x,y) used to interrogate pixel color at (x, y)

void floodFill(short x, short y, short intColor)

{

if(getPixel(x, y) == intColor)

{

setPixel(x, y);

floodFill(x – 1, y, intColor); // left pixel

floodFill(x + 1, y, intColor); // right pixel

floodFill(x, y + 1, intColor); // up pixel

floodFill(x, y – 1, intColor); // down pixel

}

}
(x, y+1)

(x, y)

(x, y-1)

(x+1, y)(x-1, y

Recursive Flood-Fill Algorithm

 Recursive flood-fill is blind

 Some pixels retested several times

 Region coherence is likelihood that an interior pixel
mostly likely adjacent to another interior pixel

 Coherence can be used to improve algorithm
performance

 A run: group of adjacent pixels lying on same scanline

 Fill runs(adjacent, on same scan line) of pixels

Region Filling Using Coherence
 Example: start at s, initial seed

Push address of seed pixel onto stack

while(stack is not empty)

{

Pop stack to provide next seed

Fill in run defined by seed

In row above find reachable interior runs

Push address of their rightmost pixels

Do same for row below current run

}

Note: algorithm most efficient if there is span coherence (pixels on scanline
have same value) and scan-line coherence (consecutive scanlines similar)

Pseudocode:

Filling Polygon-Defined Regions

 Problem: Region defined polygon with vertices

Pi = (Xi, Yi), for i = 1…N, specifying sequence of P’s
vertices

P1

P7

P6

P5

P4

P3

P2

Filling Polygon-Defined Regions

 Solution: Progress through frame buffer scan line by
scan line, filling in appropriate portions of each line

 Filled portions defined by intersection of scan line
and polygon edges

 Runs lying between edges inside P are filled

 Pseudocode:

for(each scan Line L)

{

Find intersections of L with all edges of P

Sort the intersections by increasing x-value

Fill pixel runs between all pairs of intersections

}

Filling Polygon-Defined Regions

 Example: scan line y = 3 intersects 4 edges e3, e4, e5, e6

 Sort x values of intersections and fill runs in pairs

 Note: at each intersection, inside-outside (parity), or vice versa

P1

P7

P6

P5

P4

P3

P2

e6

e5 e4

e3

3

Data Structure

Filling Polygon-Defined Regions

 Problem: What if two polygons A, B share an edge?

 Algorithm behavior could result in:

 setting edge first in one color and the another

 Drawing edge twice too bright

 Make Rule: when two polygons share edge, each polygon
owns its left and bottom edges

 E.g. below draw shared edge with color of polygon B

A

B

Filling Polygon-Defined Regions

 Problem: How to handle cases where scan line intersects
with polygon endpoints to avoid wrong parity?

 Solution: Discard intersections with horizontal edges and
with upper endpoint of any edge

See 0

See 2

See 1

See 0

See 1

See 2

See 0

Antialiasing

 Raster displays have pixels as rectangles

 Aliasing: Discrete nature of pixels introduces
“jaggies”

Antialiasing

 Aliasing effects:

 Distant objects may disappear entirely

 Objects can blink on and off in animations

 Antialiasing techniques involve some form of
blurring to reduce contrast, smoothen image

 Three antialiasing techniques:

 Prefiltering

 Postfiltering

 Supersampling

Prefiltering

 Basic idea:

 compute area of polygon coverage

 use proportional intensity value

 Example: if polygon covers ¼ of the pixel

 Pixel color = ¼ polygon color + ¾ adjacent region color

 Cons: computing polygon coverage can be time
consuming

Supersampling

 Assumes we can compute color of any location (x,y) on screen

 Sample (x,y) in fractional (e.g. ½) increments, average samples

 Example: Double sampling = increments of ½ = 9 color values
averaged for each pixel

Average 9 (x, y) values
to find pixel color

Postfiltering

 Supersampling weights all samples equally

 Post-filtering: use unequal weighting of samples

 Compute pixel value as weighted average

 Samples close to pixel center given more weight

1/2

1/161/16

1/16

1/16 1/16 1/16

1/16

1/16

Sample weighting

Antialiasing in OpenGL

 Many alternatives

 Simplest: accumulation buffer

 Accumulation buffer: extra storage, similar to frame
buffer

 Samples are accumulated

 When all slightly perturbed samples are done, copy
results to frame buffer and draw

Antialiasing in OpenGL

 First initialize:

 glutInitDisplayMode(GLUT_SINGLE |

GLUT_RGB | GLUT_ACCUM | GLUT_DEPTH);

 Zero out accumulation buffer

 glClear(GLUT_ACCUM_BUFFER_BIT);

 Add samples to accumulation buffer using

 glAccum()

Antialiasing in OpenGL

 Sample code

 jitter[] stores randomized slight displacements of camera,

 factor, f controls amount of overall sliding

glClear(GL_ACCUM_BUFFER_BIT);

for(int i=0;i < 8; i++)

{

cam.slide(f*jitter[i].x, f*jitter[i].y, 0);

display();

glAccum(GL_ACCUM, 1/8.0);

}

glAccum(GL_RETURN, 1.0);

jitter.h

-0.3348, 0.4353

0.2864, -0.3934

……

References

 Angel and Shreiner, Interactive Computer Graphics,
6th edition

 Hill and Kelley, Computer Graphics using OpenGL, 3rd

edition, Chapter 9

