CS 543: Computer Graphics Lecture 3 (Part I): Fractals

Emmanuel Agu

What are Fractals?

- Mathematical expressions
- Approach infinity in organized way
- Utilizes recursion on computers
- Popularized by Benoit Mandelbrot (Yale university)
- Dimensional:
 - Line is one-dimensional
 - Plane is two-dimensional
- Defined in terms of self-similarity

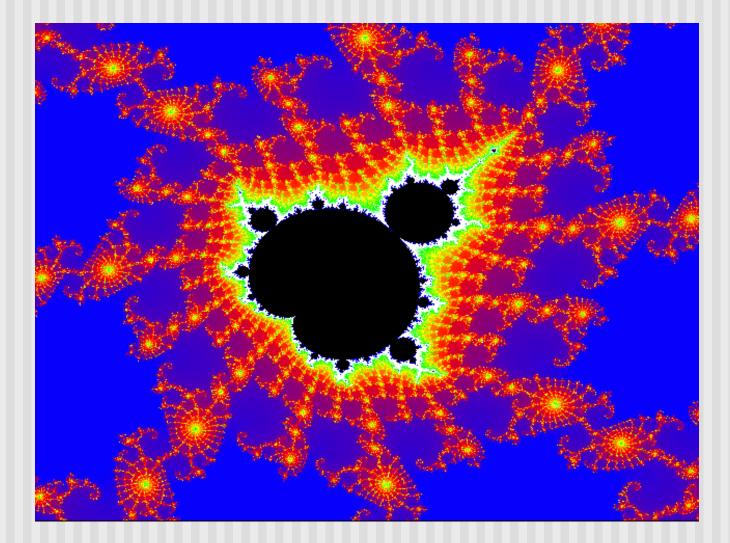
Fractals: Self-similarity

- Level of detail remains the same as we zoom in
- Example: surface roughness or profile same as we zoom in
- Types:
 - Exactly self-similar
 - Statistically self-similar

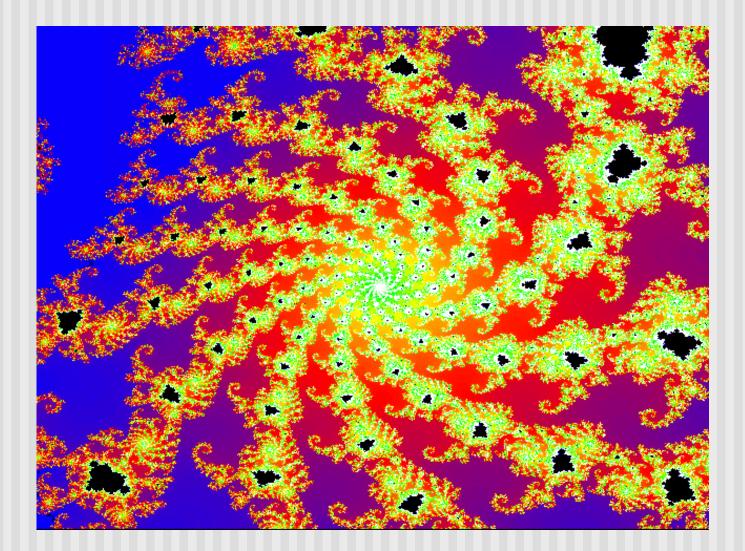
Examples of Fractals

- Clouds
- Grass
- Fire
- Modeling mountains (terrain)
- Coastline
- Branches of a tree
- Surface of a sponge
- Cracks in the pavement
- Designing antennae (www.fractenna.com)

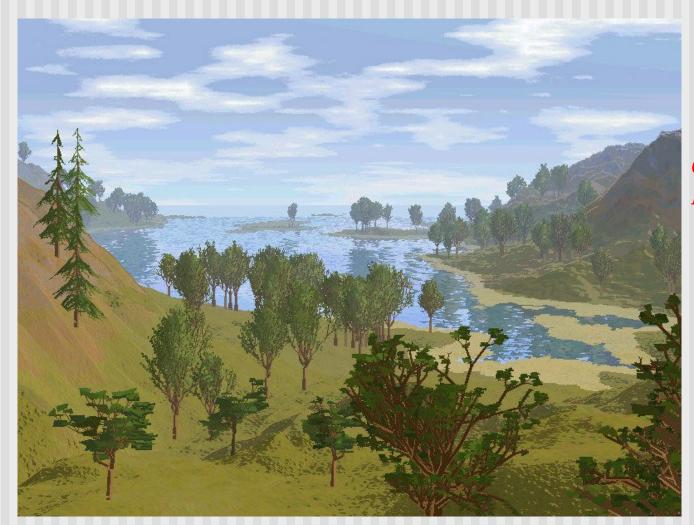
Example: Mandelbrot Set



Example: Mandelbrot Set

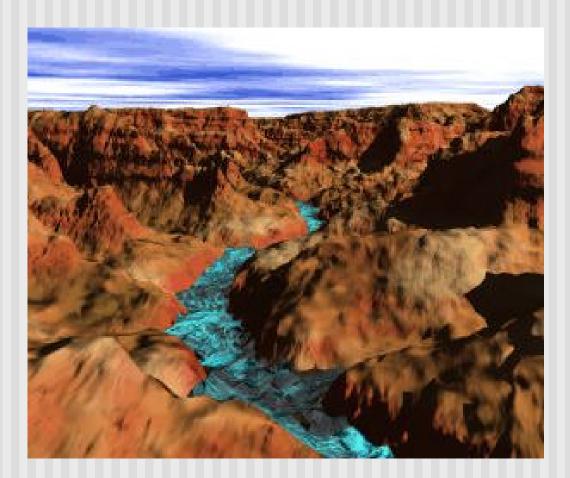


Example: Fractal Terrain

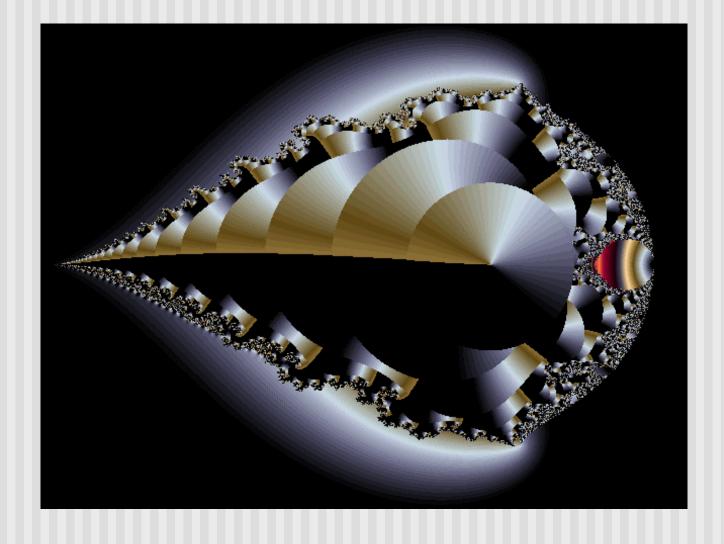


Courtesy: Mountain 3D Fractal Terrain software

Example: Fractal Terrain

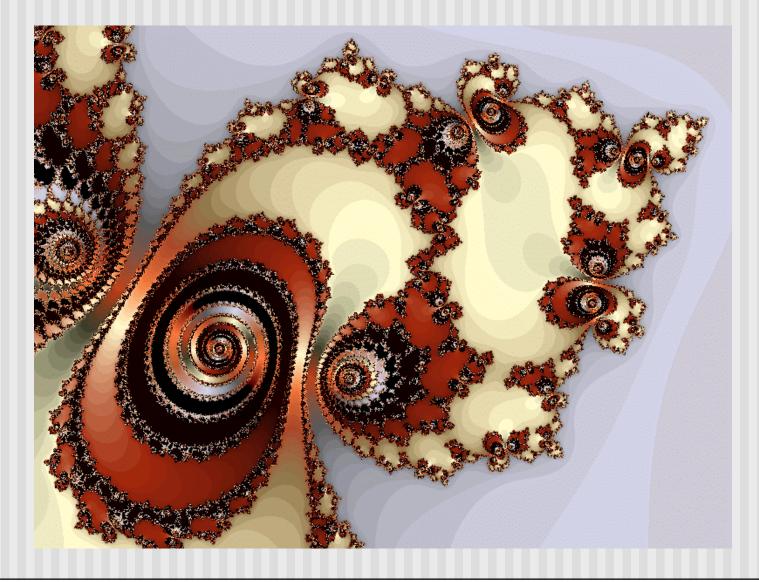


Example: Fractal Art



Courtesy: Internet Fractal Art Contest

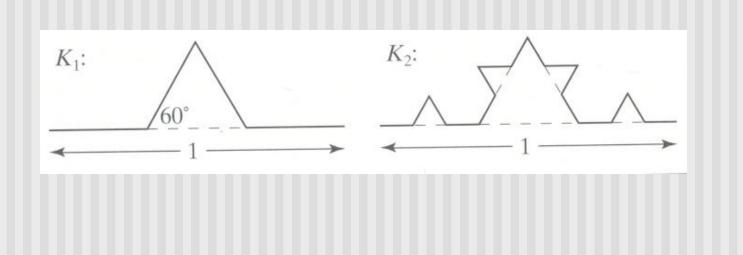
Application: Fractal Art



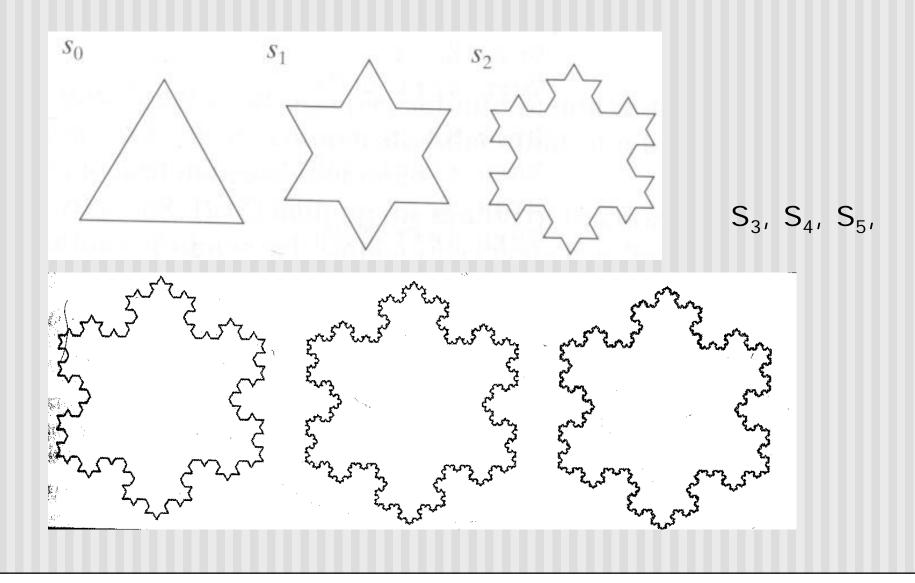
Courtesy: Internet Fractal Art Contest

Koch Curves

- Discovered in 1904 by Helge von Koch
- Start with straight line of length 1
- Recursively:
 - Divide line into 3 equal parts
 - Replace middle section with triangular bump with sides of length 1/3
 - New length = 4/3



Koch Curves



Koch Snowflakes

- Can form Koch snowflake by joining three Koch curves
- Perimeter of snowflake grows as:

$$P_i = 3\left(\frac{4}{3}\right)^i$$

where P_i is the perimeter of the ith snowflake iteration

• However, area grows slowly and $S_{\infty} = 8/5!!$

Self-similar:

- zoom in on any portion
- If n is large enough, shape still same
- On computer, smallest line segment > pixel spacing

Koch Snowflakes

Pseudocode, to draw K_n :

If (n equals 0) draw straight line Else{ Draw K_{n-1} Turn left 60° Draw K_{n-1} Turn right 120° Draw K_{n-1} Turn left 60° Draw K_{n-1} }

Iterated Function Systems (IFS)

- Recursively call a function
- Does result converge to an image? What image?
- IFS's converge to an image
- Examples:
 - The Fern
 - The Mandelbrot set

The Fern

- Based on iteration theory
- Function of interest:

$$f(z) = (s)^2 + c$$

Sequence of values (or orbit):

$$d_{1} = (s)^{2} + c$$

$$d_{2} = ((s)^{2} + c)^{2} + c$$

$$d_{3} = (((s)^{2} + c)^{2} + c)^{2} + c$$

$$d_{4} = ((((s)^{2} + c)^{2} + c)^{2} + c)^{2} + c)^{2} + c$$

- Orbit depends on s and c
- Basic question,:
 - For given *s* and *c*,
 - does function stay finite? (within Mandelbrot set)
 - explode to infinity? (outside Mandelbrot set)
- Definition: if |d| < 1, orbit is finite else inifinite
- Examples orbits:
 - *s* = 0, *c* = -1, orbit = 0, -1, 0, -1, 0, -1, 0, -1, *finite*
 - *s* = 0, *c* = 1, orbit = 0,1,2,5,26,677..... explodes

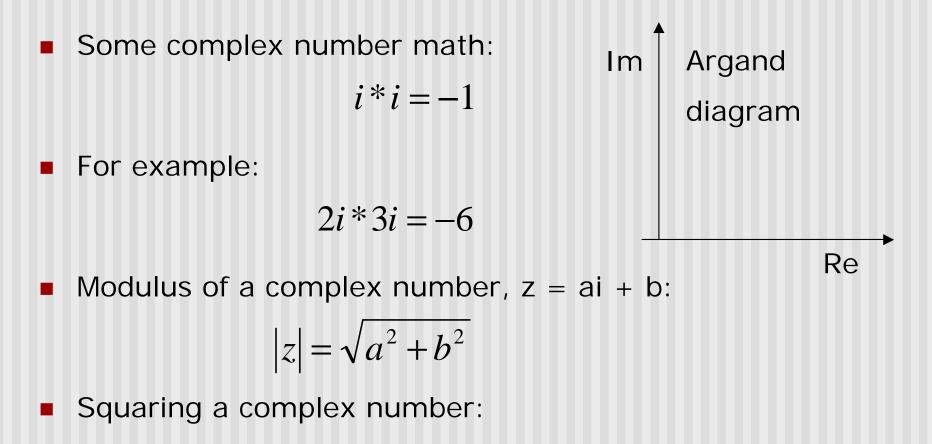
- Mandelbrot set: use complex numbers for c and s
- Always set s = 0
- Choose c as a complex number
- For example:

• s = 0, c = 0.2 + 0.5i

Hence, orbit:

• $0, \quad C, \quad C^2, \quad C^2 + C, \quad (C^2 + C)^2 + C, \ldots$

Definition: Mandelbrot set includes all finite orbit c



$$x + yi = (x^2 - y^2) + (2xy)i$$

- Calculate first 4 terms
 - with s=2, c=-1
 - with s = 0, c = -2+i

- Calculate first 3 terms
 - with s=2, c=-1, terms are

$$2^{2} - 1 = 5$$

 $5^{2} - 1 = 24$
 $24^{2} - 1 = 575$

• with s = 0, c = -2+i

$$0 + (-2 + i) = -2 + i$$

(-2+i)² + (-2+i) = 1 - 3i
(1-3i)² + (-2+i) = -10 - 5i

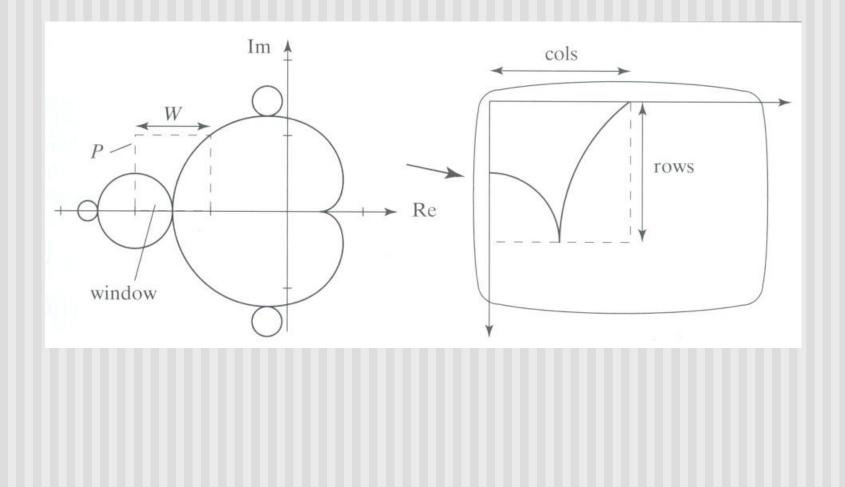
- Fixed points: Some complex numbers converge to certain values after x iterations.
- Example:
 - s = 0, c = -0.2 + 0.5i converges to -0.249227 + 0.333677i after 80 iterations
 - Experiment: square -0.249227 + 0.333677i and add
 -0.2 + 0.5i
- Mandelbrot set depends on the fact the convergence of certain complex numbers

- Routine to draw Mandelbrot set:
- Cannot iterate forever: our program will hang!
- Instead iterate 100 times
- Math theorem:
 - if number hasn't exceeded 2 after 100 iterations, never will!
- Routine returns:
 - Number of times iterated before modulus exceeds 2, or
 - 100, if modulus doesn't exceed 2 after 100 iterations
 - See dwell() function in Hill (figure A4.5, pg. 755)

Mandelbrot dwell() function (pg. 755)

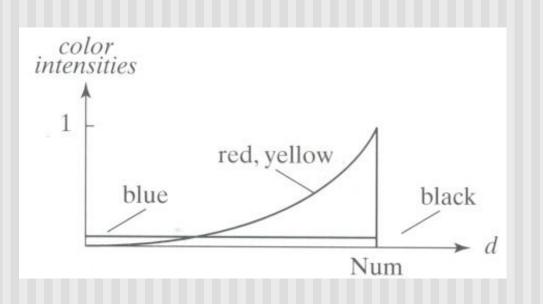
```
int dwell(double cx, double cy)
{ // return true dwell or Num, whichever is smaller
  #define Num 100 // increase this for better pics
  double tmp, dx = cx, dy = cy, fsq = cx*cx + cy*cy;
  for(int count = 0;count <= Num && fsq <= 4; count++)</pre>
  {
      tmp = dx; // save old real part
      dx = dx*dx - dy*dy + cx; // new real part
      dy = 2.0 * tmp * dy + cy; // new imag. Part
      fsq = dx*dx + dy*dy;
  }
  return count; // number of iterations used
```

- Map real part to x-axis
- Map imaginary part to y-axis
- Set world window to range of complex numbers to investigate. E.g:
 - X in range [-2.25: 0.75]
 - Y in range [-1.5: 1.5]
- Choose your viewport. E.g.
 - Viewport = [V.L, V.R, V.B, V.T] = [60,380,80,240]
- Do window-to-viewport mapping



- So, for each pixel:
 - Compute corresponding point in world
 - Call your dwell() function
 - Assign color <Red,Green,Blue> based on dwell() return value
- Choice of color determines how pretty
- Color assignment:
 - Basic: In set (i.e. dwell() = 100), color = black, else color = white
 - Discrete: Ranges of return values map to same color
 - E.g 0 20 iterations = color 1
 - 20 40 iterations = color 2, etc.
 - Continuous: Use a function

Use continuous function



FREE SOFTWARE

- Free fractal generating software
 - Fractint
 - FracZoom
 - Astro Fractals
 - Fractal Studio
 - 3DFract

References

Hill, Appendix 4