CS 543: Computer Graphics Lecture 7 (Part I): Projection

Emmanuel Agu

3D Viewing and View Volume

Recall: 3D viewing set up

Projection Transformation

- View volume can have different shapes (different looks)
- Different types of projection: parallel, perspective, orthographic, etc
- Important to control
 - Projection type: perspective or orthographic, etc.
 - Field of view and image aspect ratio
 - Near and far clipping planes

- Similar to real world
- Characterized by object foreshortening
- Objects appear larger if they are closer to camera
- Need:
 - Projection center
 - Projection plane
- Projection: Connecting the object to the projection center

Projection?

Orthographic Projection

- No foreshortening effect distance from camera does not matter
- The projection center is at infinite
- Projection calculation just drop z coordinates

Field of View

- Determine how much of the world is taken into the picture
- Larger field of view = smaller object projection size

Near and Far Clipping Planes

- Only objects between near and far planes are drawn
- Near plane + far plane + field of view = Viewing Frustum

Viewing Frustrum

- 3D counterpart of 2D world clip window
- Objects outside the frustum are clipped

Projection Transformation

- In OpenGL:
 - Set the matrix mode to GL_PROJECTION
 - Perspective projection: use
 - gluPerspective(fovy, aspect, near, far) or
 - glFrustum(left, right, bottom, top, near, far)
 - Orthographic:
 - glOrtho(left, right, bottom, top, near, far)

gluPerspective(fovy, aspect, near, far)

Aspect ratio is used to calculate the window width

glFrustum(left, right, bottom, top, near, far)

Can use this function in place of gluPerspective()

glOrtho(left, right, bottom, top, near, far)

For orthographic projection

Example: Projection Transformation

```
void display()
{
    glClear(GL_COLOR_BUFFER_BIT);
    glMatrixMode(GL_PROJECTION);
    glLoadIdentity();
    gluPerspective(fovy, aspect, near, far);
    glMatrixMode(GL_MODELVIEW);
    glLoadIdentity();
    gluLookAt(0,0,1,0,0,0,0,1,0);
    display_all(); // your display routine
}
```

Demo

Nate Robbins demo on projection

Projection Transformation

Projection – map the object from 3D space to 2D screen

Perspective: **gluPerspective()**

Parallel: glOrtho()

Parallel Projection

- After transforming the object to the eye space, parallel projection is relatively easy – we could just drop the Z
 - \blacksquare Xp = x
 - Yp = y
 - $\mathbf{Z}p = -d$
- We actually want to keep Z– why?

Parallel Projection

 OpenGL maps (projects) everything in the visible volume into a canonical view volume

Projection: Need to build 4x4 matrix to do mapping from actual view volume to CVV

- Parallel projection can be broken down into two parts
- Translation which centers view volume at origin
- Scaling which reduces cuboid of arbitrary dimensions to canonical cube (dimension 2, centered at origin)

- Translation sequence moves midpoint of view volume to coincide with origin:
- E.g. midpoint of x = (xmax + xmin)/2
- Thus translation factors:
 - -(xmax+xmin)/2, -(ymax+ymin)/2, -(far+near)/2
- And translation matrix M1:

$$\begin{pmatrix}
1 & 0 & 0 & -(x \max + x \min) / 2 \\
0 & 1 & 0 & -(y \max + y \min) / 2 \\
0 & 0 & 1 & -(z \max + z \min) / 2 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

- Scaling factor is ratio of cube dimension to Ortho view volume dimension
- Scaling factors:2/(xmax-xmin), 2/(ymax-ymin), 2/(zmax-zmin)
- Scaling Matrix M2:

$$\begin{pmatrix}
\frac{2}{x \max - x \min} & 0 & 0 & 0 \\
0 & \frac{2}{y \max - y \min} & 0 & 0 \\
0 & 0 & \frac{2}{z \max - z \min} & 0 \\
0 & 0 & 1
\end{pmatrix}$$

Concatenating M1xM2, we get transform matrix used by glOrtho

$$\begin{pmatrix}
\frac{2}{x \max - x \min} & 0 & 0 & 0 \\
0 & \frac{2}{y \max - y \min} & 0 & 0 \\
0 & 0 & \frac{2}{z \max - z \min} & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$X$$

$$\begin{pmatrix}
1 & 0 & 0 & -(x \max + x \min) / 2 \\
0 & 1 & 0 & -(y \max + y \min) / 2 \\
0 & 0 & 1 & -(z \max + z \min) / 2 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$M2 \times M1 = \begin{pmatrix} 2/(x \max - x \min) & 0 & 0 & -(x \max + x \min)/(x \max - x \min) \\ 0 & 2/(y \max - y \min) & 0 & -(y \max + \min)/(y \max - \min) \\ 0 & 0 & 2/(z \max - z \min) & -(z \max + z \min)/(z \max - z \min) \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Refer: Hill, 7.6.2

Perspective Projection: Classical

■ Side view:

Projection plane

(x,y,z)

(x',y',z')

d

-z

Eye (projection center)

Based on similar triangle:

$$\frac{y}{y'} = \frac{-z}{d}$$

$$y' = y \times \frac{d}{-7}$$

Perspective Projection: Classical

So (x*,y*) the projection of point, (x,y,z) unto the near plane N is given as:

$$(x^*, y^*) = \left(N\frac{P_x}{-P_z}, N\frac{P_y}{-P_z}\right)$$

- Numerical example:
- Q. Where on the viewplane does P = (1, 0.5, -1.5) lie for a near plane at N = 1?
- $(x^*, y^*) = (1 \times 1/1.5, 1 \times 0.5/1.5) = (0.666, 0.333)$

Pseudodepth

- Classical perspective projection projects (x,y) coordinates, drops z coordinates
- But we need z to find closest object (depth testing)
- Keeping actual distance of P from eye is cumbersome and slow

$$dis an ce = \sqrt{(P_x^2 + P_y^2 + P_z^2)}$$

■ Introduce **pseudodepth**: all we need is measure of which objects are further if two points project to same (x,y)

$$(x^*, y^*, z^*) = \left(N \frac{P_x}{-P_z}, N \frac{P_y}{-P_z}, \frac{aP_z + b}{-P_z}\right)$$

 Choose a, b so that pseudodepth varies from -1 to 1 (canonical cube)

Pseudodepth

Solving:

$$z^* = \frac{aP_z + b}{-P_z}$$

- For two conditions, $z^* = -1$ when Pz = -N and $z^* = 1$ when Pz = -F, we can set up two simultaneous equations
- Solving:

$$a = \frac{-(F+N)}{F-N} \qquad b = \frac{-2FN}{F-N}$$

Homogenous Coordinates

- Would like to express projection as 4x4 transform matrix
- Previously, homogeneous coordinates of the point P = (Px,Py,Pz) was (Px,Py,Pz,1)
- Introduce arbitrary scaling factor, w, so that P = (wPx, wPy, wPz, w) (Note: w is non-zero)
- For example, the point P = (2,4,6) can be expressed as
 - **(**2,4,6,1)
 - or (4,8,12,2) where w=2
 - or (6,12,18,3) where w = 3
- So, to convert from homogeneous back to ordinary coordinates, divide all four terms by last component and discard 4th term

Same for x. So we have:

$$x' = x \times d / -z$$

 $y' = y \times d / - z$
 $z' = -d$

Put in a matrix form:

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & \left(\frac{1}{-d}\right) & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} x' \\ y' \\ z' \\ -z/d \end{pmatrix} \Rightarrow \begin{pmatrix} -d \begin{pmatrix} x/z \\ z/z \end{pmatrix} \\ -d \begin{pmatrix} y/z \\ z/z \end{pmatrix} \\ -d \begin{pmatrix} 1/z \\ 1/z \end{pmatrix}$$

OpenGL assumes d = 1, i.e. the image plane is at z = -1

- We are not done yet.
- Need to modify the projection matrix to include a and b

$$\begin{vmatrix} x' \\ y' \\ z' \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & (1/-d) & 0 \end{vmatrix} \begin{vmatrix} x \\ y \\ z \\ 1 \end{vmatrix}$$

We have already solved a and b

- Not done yet. OpenGL also normalizes the x and y ranges of the viewing frustum to [-1, 1] (translate and scale)
- So, as in ortho to arrive at final projection matrix
- we translate by
 - -(xmax + xmin)/2 in x
 - -(ymax + ymin)/2 in y
- Scale by:
 - = 2/(xmax xmin) in x
 - 2/(ymax ymin) in y

Final Projection Matrix:

$$\begin{pmatrix}
\frac{2N}{x \max - x \min} & 0 & \frac{x \max + x \min}{x \max - x \min} & 0 \\
0 & \frac{2N}{y \max - y \min} & \frac{y \max + y \min}{y \max - y \min} & 0 \\
0 & 0 & \frac{-(F+N)}{F-N} & \frac{-2FN}{F-N} \\
0 & 0 & -1 & 0
\end{pmatrix}$$

glFrustum(xmin, xmax, ymin, ymax, N, F) N = near plane, F = far plane

 After perspective projection, viewing frustum is also projected into a canonical view volume (like in parallel projection)

References

Hill, chapter 7