CS 543: Computer Graphics Lecture 7 (Part I): Projection

Emmanuel Agu

3D Viewing and View Volume

- Recall: 3D viewing set up

Projection Transformation

- View volume can have different shapes (different looks)
- Different types of projection: parallel, perspective, orthographic, etc
- Important to control
- Projection type: perspective or orthographic, etc.
- Field of view and image aspect ratio
- Near and far clipping planes

Perspective Projection

- Similar to real world
- Characterized by object foreshortening
- Objects appear larger if they are closer to camera
- Need:
- Projection center
- Projection plane
- Projection: Connecting the object to the projection center

projection plane

Projection?

Orthographic Projection

- No foreshortening effect - distance from camera does not matter
- The projection center is at infinite
- Projection calculation - just drop z coordinates

Field of View

- Determine how much of the world is taken into the picture
- Larger field of view = smaller object projection size

Near and Far Clipping Planes

- Only objects between near and far planes are drawn
- Near plane + far plane + field of view = Viewing Frustum

Viewing Frustrum

- 3D counterpart of 2D world clip window
- Objects outside the frustum are clipped

Projection Transformation

- In OpenGL:
- Set the matrix mode to GL_PROJECTION
- Perspective projection: use
- gluPerspective(fovy, aspect, near, far) or
- glFrustum(left, right, bottom, top, near, far)
- Orthographic:
- glOrtho(left, right, bottom, top, near, far)

gluPerspective(fovy, aspect, near, far)

- Aspect ratio is used to calculate the window width

gIFrustum(left, right, bottom, top, near, far)

- Can use this function in place of gluPerspective()

glOrtho(left, right, bottom, top, near, far)

- For orthographic projection

Example: Projection Transformation

```
void display()
{
    gIClear(GL_COLOR_BUFFER_BIT);
    glMatrixMode(GL_PROJECTION);
    glLoadl dentity();
    gluPerspective(fovy, aspect, near, far);
    glMatrixMode(GL_MODELVIEW);
    glLoadl dentity();
    gluLookAt(0,0,1,0,0,0,0,1,0);
    display_all(); // your display routine
}
```


Demo

- Nate Robbins demo on projection

Projection Transformation

- Projection - map the object from 3D space to 2D screen

Perspective: gluPerspective()

Parallel: glOrtho()

Parallel Projection

- After transforming the object to the eye space, parallel projection is relatively easy - we could just drop the Z
- $X p=x$
- $Y p=y$
- $Z p=-d$
- We actually want to keep Z
- why?

Parallel Projection

- OpenGL maps (projects) everything in the visible volume into a canonical view volume
(xmin, ymin, near)

glOrtho(xmin, xmax, ymin,
$(-1,-1,1)$
(1, 1, -1)

ymax, near, far)
Canonical View Volume Projection: Need to build 4×4 matrix to do mapping from actual view volume to CVV

Parallel Projection: glOrtho

- Parallel projection can be broken down into two parts
- Translation which centers view volume at origin
- Scaling which reduces cuboid of arbitrary dimensions to canonical cube (dimension 2, centered at origin)

Parallel Projection: gIOrtho

- Translation sequence moves midpoint of view volume to coincide with origin:
- E.g. midpoint of $x=(x \max +x \min) / 2$
- Thus translation factors:
$-(x m a x+x m i n) / 2,-(y m a x+y m i n) / 2,-(f a r+n e a r) / 2$
- And translation matrix M1:

$$
\left(\begin{array}{lllcc}
1 & 0 & 0 & -(x \max +x \min) & / 2 \\
0 & 1 & 0 & -(y \max +y \min) & / 2 \\
0 & 0 & 1 & -(z \max +z \min) & / 2 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Parallel Projection: glOrtho

- Scaling factor is ratio of cube dimension to Ortho view volume dimension
- Scaling factors:

2/(xmax-xmin), 2/(ymax-ymin), 2/(zmax-zmin)

- Scaling Matrix M2:
$\left(\begin{array}{cccc}\frac{2}{x \max -x \min } & 0 & 0 & 0 \\ 0 & \frac{2}{y \max -y \min } & 0 & 0 \\ 0 & 0 & \frac{2}{z \max -z \min } & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$

Parallel Projection: glOrtho

Concatenating M1xM2, we get transform matrix used by glortho

$$
\left(\begin{array}{cccc}
\frac{2}{x \max -x \min } & 0 & 0 & 0 \\
0 & \frac{2}{y \max -y \min } & 0 & 0 \\
0 & 0 & \frac{2}{z \max -z \min } & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad X \quad\left(\begin{array}{lllc}
1 & 0 & 0 & -(x \max +x \min) / 2 \\
0 & 1 & 0 & -(y \max +y \min) / 2 \\
0 & 0 & 1 & -(z \max +z \min) / 2 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$$
M 2 \times M 1=\left(\begin{array}{cccc}
2 /(x \max -x \min) & 0 & 0 & -(x \max +x \min) /(x \max -x \min) \\
0 & 2 /(y \max -y \min) & 0 & -(y \max +\min) /(y \max -\min) \\
0 & 0 & 2 /(z \max -z \min) & -(z \max +z \min) /(z \max -z \min) \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Refer: Hill, 7.6.2

Perspective Projection: Classical

- Side view:

Based on similar triangle:

$$
\begin{aligned}
\frac{y}{y^{\prime}} & =\frac{-z}{d} \\
\Rightarrow y^{\prime} & =y \times \frac{d}{-z}
\end{aligned}
$$

Eye (projection center)

Perspective Projection: Classical

- So (x^{*}, y^{*}) the projection of point, (x, y, z) unto the near plane N is given as:

$$
\left(x^{*}, y^{*}\right)=\left(N \frac{P_{x}}{-P_{z}}, N \frac{P_{y}}{-P_{z}}\right)
$$

- Numerical example:
Q. Where on the viewplane does $P=(1,0.5,-1.5)$ lie for a near plane at $\mathrm{N}=1$?
- $\left(x^{*}, y^{*}\right)=(1 \times 1 / 1.5,1 \times 0.5 / 1.5)=(0.666,0.333)$

Pseudodepth

- Classical perspective projection projects (x, y) coordinates, drops z coordinates
- But we need z to find closest object (depth testing)
- Keeping actual distance of P from eye is cumbersome and slow

$$
\text { dis } \tan c e=\sqrt{\left(P_{x}^{2}+P_{y}^{2}+P_{z}^{2}\right)}
$$

- Introduce pseudodepth: all we need is measure of which objects are further if two points project to same (x, y)

$$
\left(x^{*}, y^{*}, z^{*}\right)=\left(N \frac{P_{x}}{-P_{z}}, N \frac{P_{y}}{-P_{z}}, \frac{a P_{z}+b}{-P_{z}}\right)
$$

- Choose a, b so that pseudodepth varies from -1 to 1 (canonical cube)

Pseudodepth

- Solving:

$$
z^{*}=\frac{a P_{z}+b}{-P_{z}}
$$

- For two conditions, $z^{*}=-1$ when $P z=-N$ and $z^{*}=1$ when $\mathrm{Pz}=-\mathrm{F}$, we can set up two simultaneuous equations
- Solving:

$$
a=\frac{-(F+N)}{F-N} \quad b=\frac{-2 F N}{F-N}
$$

Homogenous Coordinates

- Would like to express projection as 4×4 transform matrix
- Previously, homogeneous coordinates of the point $P=$ (Px,Py,Pz) was (Px,Py,Pz,1)
- Introduce arbitrary scaling factor, w, so that $P=(w P x$, wPy, wPz, w) (Note: w is non-zero)
- For example, the point $P=(2,4,6)$ can be expressed as
- $(2,4,6,1)$
- or $(4,8,12,2)$ where $\mathrm{w}=2$
- or $(6,12,18,3)$ where $w=3$
- So, to convert from homogeneous back to ordinary coordinates, divide all four terms by last component and discard $4^{\text {th }}$ term

Perspective Projection

- Same for x. So we have:

$$
\begin{aligned}
& x^{\prime}=x \times d /-z \\
& y^{\prime}=y \times d /-z \\
& z^{\prime}=-d
\end{aligned}
$$

- Put in a matrix form:

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & (1 /-d) & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right)=\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
-z / d
\end{array}\right) \Rightarrow\left(\begin{array}{c}
-d(x / z) \\
-d(y / z) \\
-d \\
1
\end{array}\right)
$$

OpenGL assumes $d=1$, i.e. the image plane is at $z=-1$

Perspective Projection

- We are not done yet.
- Need to modify the projection matrix to include a and b

$$
\left|\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w
\end{array}\right|=\left|\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & a & b \\
0 & 0 & (1 /-d) & 0
\end{array}\right| \quad\left|\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right|
$$

We have already solved a and b

Perspective Projection

- Not done yet. OpenGL also normalizes the x and y ranges of the viewing frustum to $[-1,1]$ (translate and scale)
- So, as in ortho to arrive at final projection matrix
- we translate by
- $-(x \max +x \min) / 2$ in x
- $-(y \max +y \min) / 2$ in y
- Scale by:
- 2/(xmax - xmin) in x
- 2/(ymax - ymin) in y

Perspective Projection

- Final Projection Matrix:
$\left(\begin{array}{cccc}\frac{2 N}{x \max -x \min } & 0 & \frac{x \max +x \min }{x \max -x \min } & 0 \\ 0 & \frac{2 N}{y \max -y \min } & \frac{y \max +y \min }{y \max -y \min } & 0 \\ 0 & 0 & \frac{-(F+N)}{F-N} & \frac{-2 F N}{F-N} \\ 0 & 0 & 0\end{array}\right)$
glFrustum(xmin, xmax, ymin, ymax, \mathbf{N}, F) $\mathrm{N}=$ near plane, $\mathrm{F}=$ far plane

Perspective Projection

- After perspective projection, viewing frustum is also projected into a canonical view volume (like in parallel projection)

Canonical View Volume

References

- Hill, chapter 7

