
CS 543: Computer Graphics
Lecture 8 (Part II): Hidden Surface Removal

Emmanuel Agu

Hidden surface Removal

n Drawing polygonal faces on screen consumes CPU cycles
n We cannot see every surface in scene
n To save time, draw only surfaces we see
n Surfaces we cannot see and their elimination methods:

n Occluded surfaces: hidden surface removal (visibility)
n Back faces: back face culling
n Faces outside view volume: viewing frustrum culling

n Definitions:
n Object space techniques: applied before vertices are

mapped to pixels
n Image space techniques: applied after vertices have been

rasterized

Visibility (hidden surface removal)

n A correct rendering requires correct visibility
calculations

n Correct visibility – when multiple opaque polygons cover
the same screen space, only the closest one is visible
(remove the other hidden surfaces)

wrong visibility Correct visibility

Visibility (hidden surface removal)

n Goal: determine which objects are visible to the eye
n Determine what colors to use to paint the pixels

n Active research subject - lots of algorithms have been
proposed in the past (and is still a hot topic)

Visibility (hidden surface removal)

n Where is visiblity performed in the graphics pipeline?

modeling and
viewing

v1, m1

v2, m2 v3, m3

per vertex
lighting projection

clippinginterpolate
vertex colors

viewport
mapping

Rasterization
texturing
Shading
visibility

Display

Note: Map (x,y) values to screen (draw) and use z
value for depth testing

OpenGL - Image Space Approach

§ Determine which of the n objects is visible to each pixel
on the image plane

for (each pixel in the image) {
determine the object closest to the pixel
draw the pixel using the object’s color

}

Image Space Approach – Z-buffer

n Method used in most of graphics hardware (and thus
OpenGL): Z-buffer (or depth buffer) algorithm

n Requires lots of memory
n Recall: after projection transformation, in viewport

transformation
n x,y used to draw screen image, mapped to viewport
n z component is mapped to pseudo-depth with range [0,1]

n Objects/polygons are made up of vertices
n Hence, we know depth z at polygon vertices
n Point on object seen through pixel may be between

vertices
n Need to interpolate to find z

Image Space Approach – Z-buffer

n Basic Z-buffer idea:
n rasterize every input polygon
n For every pixel in the polygon interior, calculate its

corresponding z value (by interpolation)
n Track depth values of closest polygon (smallest z) so far
n Paint the pixel with the color of the polygon whose z value

is the closest to the eye.

Z (depth) buffer algorithm

n How to choose the polygon that has the closet Z for a
given pixel?

n Example: eye at z = 0, farther objects have
increasingly positive values, between 0 and 1

1. Initialize (clear) every pixel in the z buffer to 1.0
2. Track polygon z’s.
3. As we rasterize polygons, check to see if polygon’s z

through this pixel is less than current minimum z
through this pixel

4. Run the following loop:

Z (depth) Buffer Algorithm

For each polygon {

for each pixel (x,y) inside the polygon projection area {

if (z_polygon_pixel(x,y) < depth_buffer(x,y)) {

depth_buffer(x,y) = z_polygon_pixel(x,y);

color_buffer(x,y) = polygon color at (x,y)
}

}
}

Note: know depths at vertices. Interpolate for interior
z_polygon_pixel(x, y) depths

Z buffer example

eye

Z = 0.3

Z = 0.5

Top View

Correct Final image

Z buffer example

1.0 1.0 1.0 1.0

Step 1: Initialize the depth buffer

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

Z buffer example

Step 2: Draw the blue polygon (assuming the OpenGL
program draws blue polyon first – the order does
not affect the final result any way).

eye

Z = 0.3

Z = 0.5
1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

0.5 0.5 1.0 1.0

0.5 0.5 1.0 1.0

Z buffer example

Step 3: Draw the yellow polygon

eye

Z = 0.3

Z = 0.5

1.0 0.3 0.3 1.0

0.5 0.3 0.3 1.0

0.5 0.5 1.0 1.0

z-buffer drawback: wastes resources by rendering a face and then
drawing over it

1.0 1.0 1.0 1.0

Combined z-buffer and Gouraud Shading (fig 8.31)

for(int y = ybott; y <= ytop; y++) // for each scan line
{

for(each polygon){
find xleft and xright
find dleft and dright, and dinc
find colorleft and colorright, and colorinc
for(int x = xleft, c = colorleft, d = dleft; x <= xright;

x++, c+= colorinc, d+= dinc)
if(d < d[x][y])
{

put c into the pixel at (x, y)
d[x][y] = d; // update closest depth

}}
}

color3

color4

color1

color2

ybott
ys

y4

ytop

xrightxleft

Z-Buffer Depth Compression

n Recall that we chose parameters a and b to map z from
range [near, far] to pseudodepth range[0,1]

n This mapping is almost linear close to eye
n Non-linear further from eye, approaches asymptote
n Also limited number of bits
n Thus, two z values close to far plane may map to same

pseudodepth: Errors!!

Actual z

-Pz

1

-1

N

F

Pz
baPz

−
+

NF
NFa −

+−=

NF
FNb −

−−= 2

OpenGL HSR Commands

n Primarily three commands to do HSR

n glutInitDisplayMode(GLUT_DEPTH | GLUT_RGB) instructs
openGL to create depth buffer

n glEnable(GL_DEPTH_TEST) enables depth testing

n glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
initializes the depth buffer every time we draw a new
picture

Back Face Culling

n Back faces: faces of opaque object which are “pointing
away” from viewer

n Back face culling – remove back faces (supported by
OpenGL)

n How to detect back faces?

Back face

Back Face Culling

n If we find backface, do not draw, save rendering resources
n There must be other forward face(s) closer to eye
n F is face of object we want to test if backface
n P is a point on F
n Form view vector, V as (eye – P)
n N is normal to face F

N
V

N

Backface test: F is backface if N.V < 0 why??

Back Face Culling: Draw mesh front faces

void Mesh::drawFrontFaces()
{

for(int f = 0;f < numFaces; f++)
{

if(isBackFace(f, ….) continue;
glBegin(GL_POLYGON);
{

int in = face[f].vert[v].normIndex;
int iv = face[v].vert[v].vertIndex;
glNormal3f(norm[in].x, norm[in].y, norm[in].z;
glVertex3f(pt[iv].x, pt[iv].y, pt[iv].z);

glEnd();
}

Ref: case study 7.5, pg 406, Hill

View-Frustum Culling

n Remove objects that are outside the viewing frustum
n Done by 3D clipping algorithm (e.g. Liang-Barsky)

Ray Tracing

n Ray tracing is another example of image space method
n Ray tracing: Cast a ray from eye through each pixel to

the world.
n Question: what does eye see in direction looking

through a given pixel?

Will discuss more later

Painter’s Algorithm

n A depth sorting method
n Surfaces are sorted in the order of decreasing depth
n Surfaces are drawn in the sorted order, and overwrite

the pixels in the frame buffer
n Subtle difference from depth buffer approach: entire

face drawn
n Two problems:

n It can be nontrivial to sort the surfaces
n There can be no solution for the sorting order

References

n Hill, section 8.5

