CS 543: Computer Graphics Lecture 10 (Part III): Curves

Emmanuel Agu

So Far...

- Dealt with straight lines and flat surfaces
- Real world objects include curves
- Need to develop:
- Representations of curves
- Tools to render curves

Curve Representation: Explicit

- One variable expressed in terms of another
- Example:

$$
z=f(x, y)
$$

- Works if one x-value for each y value
- Example: does not work for a sphere

$$
z=\sqrt{x^{2}+y^{2}}
$$

- Rarely used in CG because of this limitation

Curve Representation: Implicit

- Algebraic: represent 2D curve or 3D surface as zeros of a formula
- Example: sphere representation

$$
x^{2}+y^{2}+z^{2}-1=0
$$

- May restrict classes of functions used
- Polynomial: function which can be expressed as linear combination of integer powers of x, y, z
- Degree of algebraic function: highest sum of powers in function
- Example: yx^{4} has degree of 5

Curve Representation: Parametric

- Represent 2D curve as 2 functions, 1 parameter

$$
(x(u), y(u))
$$

- 3D surface as 3 functions, 2 parameters

$$
(x(u, v), y(u, v), z(u, v))
$$

- Example: parametric sphere

$$
\begin{aligned}
& x(\theta, \phi)=\cos \phi \cos \theta \\
& y(\theta, \phi)=\cos \phi \sin \theta \\
& z(\theta, \phi)=\sin \phi
\end{aligned}
$$

Choosing Representations

- Different representation suitable for different applications
- Implicit representations good for:
- Computing ray intersection with surface
- Determining if point is inside/outside a surface
- Parametric representation good for:
- Breaking surface into small polygonal elements for rendering
- Subdivide into smaller patches
- Sometimes possible to convert one representation into another

Continuity

- Consider parametric curve

$$
P(u)=(x(u), y(u), z(u))^{T}
$$

- We would like smoothest curves possible
- Mathematically express smoothness as continuity (no jumps)
- Defn: if kth derivatives exist, and are continuous, curve has k th order parametric continuity denoted C^{k}

Continuity

- $0^{\text {th }}$ order means curve is continuous
- $1^{\text {st }}$ order means curve tangent vectors vary continuously, etc
- We generally want highest continuity possible
- However, higher continuity = higher computational cost
- C^{2} is usually acceptable

Not continuous

C^{0} continuous

C^{1} continuous

C^{2} continuous

I nteractive Curve Design

- Mathematical formula unsuitable for designers
- Prefer to interactively give sequence of control points
- Write procedure:
- Input: sequence of points
- Output: parametric representation of curve

Interactive Curve Design

- 1 approach: curves pass through control points (interpolate)
- Example: Lagrangian Interpolating Polynomial
- Difficulty with this approach:
- Polynomials always have "wiggles"
- For straight lines wiggling is a problem
- Our approach: merely approximate control points (Bezier, BSplines)

Interpolation

Approximation

De Casteljau Algorithm

- Consider smooth curve that approximates sequence of control points [p0, p1,...]

$$
p(u)=(1-u) p_{0}+u p_{1} \quad 0 \leq u \leq 1
$$

- Blending functions: u and ($1-u$) are non-negative and sum to one

De Casteljau Algorithm

- Now consider 3 points
- 2 line segments, P0 to P1 and P1 to P2

$$
p_{01}(u)=(1-u) p_{0}+u p_{1} \quad p_{11}(u)=(1-u) p_{1}+u p_{2}
$$

De Casteljau Algorithm

$$
\begin{aligned}
p(u) & =(1-u) p_{01}+u p_{11}(u) \\
& =(1-u)^{2} p_{0}+(2 u(1-u)) p_{1}+u^{2} p_{2}
\end{aligned}
$$

Example: Bezier curves with 3, 4 control points

De Casteljau Algorithm

Blending functions for degree 2 Bezier curve

$$
b_{02}(u)=(1-u)^{2} \quad b_{12}(u)=2 u(1-u) \quad b_{22}(u)=u^{2}
$$

Note: blending functions, non-negative, sum to 1

De Casteljau Algorithm

- Extend to 4 points P0, P1, P2, P3

$$
p(u)=(1-u)^{3} p_{0}+\left(3 u(1-u)^{2} p_{1}+\left(3 u^{2}(1-u)\right) p_{2}+u^{3}\right.
$$

- Repeated interpolation is De Casteljau algorithm
- Final result above is Bezier curve of degree 3

De Casteljau Algorithm

- Blending functions for 4 points
- These polynomial functions called Bernstein's polynomials

$$
\begin{aligned}
& b_{03}(u)=(1-u)^{3} \\
& b_{13}(u)=3 u(1-u)^{2} \\
& b_{23}(u)=3 u^{2}(1-u) \\
& b_{33}(u)=u^{3}
\end{aligned}
$$

De Casteljau Algorithm

- Writing coefficient of blending functions gives Pascal's triangle

In general, blending function for k Bezier curve has form

$$
b_{i k}(u)=\binom{k}{i}(1-u)^{k-i} u^{i} \quad \text { where } \quad\binom{k}{i}=\frac{k!}{i!(k-i)!}
$$

De Casteljau Algorithm

- Can express cubic parametric curve in matrix form

$$
p(u)=\left[1, u, u^{2}, u^{3}\right] M_{B}\left[\begin{array}{c}
p_{0} \\
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right]
$$

where

$$
M_{B}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-3 & 3 & 0 & 0 \\
3 & -6 & 3 & 0 \\
-1 & 3 & -3 & 1
\end{array}\right]
$$

Subdividing Bezier Curves

- OpenGL renders flat objects
- To render curves, approximate by small linear segments
- Subdivide curved surface to polygonal patches
- Bezier curves useful for elegant, recursive subdivision
- May have different levels of recursion for different parts of curve or surface
- Example: may subdivide visible surfaces more than hidden surfaces

Subdividing Bezier Curves

- Let (P0... P3) denote original sequence of control points
- Relabel these points as (P00... P30)
- Repeat interpolation ($u=1 / 2$) and label vertices as below
- Sequences (P00, P01, P02,P03) and (P03,P12,P21,30) define Bezier curves also
- Bezier Curves can either be straightened or curved recursively in this way

Bezier Surfaces

- Bezier surfaces: interpolate in two dimensions
- This called Bilinear interpolation
- Example: 4 control points, P00, P01, P10, P11, 2 parameters u and v
- Interpolate between
- P00 and P01 using u
- P10 and P11 using u
- Repeat two steps above using v

$$
\begin{aligned}
p(u, v) & =(1-v)\left((1-u) p_{00}+u p_{01}\right)+v\left((1-u) p_{10}+u p_{11}\right) \\
& =(1-v)(1-u) p_{00}+(1-v) u p_{01}+v(1-u) p_{10}+v u p_{11}
\end{aligned}
$$

Bezier Surfaces

- Recalling, (1-u) and u are first-degree Bezier blending functions $\mathrm{b} 0,1(\mathrm{u})$ and $\mathrm{b} 1,1(\mathrm{u})$

$$
\begin{aligned}
& p(u, v)=b_{01}(v) b_{01}(u) p_{00}+b_{01}(v) b_{11} b_{01}(u) p_{01}+b_{11}(v) b_{11}(u) p_{11} \\
& \text { Generalizing for cubic } p(u, v)=\sum_{i=0}^{3} \sum_{j=0}^{3} b_{i, 3}(v) b_{j, 3}(u) p_{i, j}
\end{aligned}
$$

Rendering Bezier patches in openGL: $\mathrm{v}=\mathrm{u}=1 / 2$

B-Splines

- Bezier curves are elegant but too many control points
- Smoother = more control points = higher order polynomial
- Undesirable: every control point contributes to all parts of curve
- B-splines designed to address Bezier shortcomings
- Smooth blending functions, each non-zero over small range
- Use different polynomial in each range, (piecewise polynomial)

$$
p(u)=\sum_{i=0}^{m} B_{i}(u) p_{i}
$$

B-spline blending functions, order 2

NURBS

- Encompasses both Bezier curves/surfaces and B-splines
- Non-uniform Rational B-splines (NURBS)
- Rational function is ratio of two polynomials
- NURBS use rational blending functions
- Some curves can be expressed as rational functions but not as simple polynomials
- No known exact polynomial for circle
- Rational parametrization of unit circle on xy-plane:

$$
\begin{aligned}
& x(u)=\frac{1-u^{2}}{1+u^{2}} \\
& y(u)=\frac{2 u}{1+u^{2}} \\
& z(u)=0
\end{aligned}
$$

NURBS

- We can apply homogeneous coordinates to bring in w

$$
\begin{aligned}
& x(u)=1-u^{2} \\
& y(u)=2 u \\
& z(u)=0 \\
& w(u)=1+u^{2}
\end{aligned}
$$

- Using w, we cleanly integrate rational parametrization
- Useful property of NURBS: preserved under transformation
- Thus, we can project control points and then render NURBS

References

- Hill, chapter 11

