CS 4731/543: Computer Graphics

Lecture 4 (Part 11): 3D Viewing and Camera Control

Emmanuel Agu




3D Viewing

= Similar to taking a photograph
m Control the “lens” of the camera
m Project the object from 3D world to 2D screen

viewing
volume

camera

tripod




Viewing Transformation

m Recall, setting up the Camera:
m gluLookAt (Ex, Ey, Ez, cx, cy, cz, Up_X, Up_y, Up 2)
m The view up vector is usually (0,1,0)
m Remember to set the OpenGL matrix mode to
GL_MODELVIEW first
= Modelview matrix:
m combination of modeling matrix M and Camera transforms V

m gluLookAt fills V part of modelview matrix

= What does gluLookAt do with parameters (eye, LookAt, up
vector) you provide?




Viewing Transformation

m OpenGL Code:

void display()

{
glClear(GL_COLOR_BUFFER_BIT);
glMatrixMode(GL MODELVIEW);
glLoadldentity();
gluLookAt(0,0,1,0,0,0,0,1,0);
display_all(); // your display routine




Viewing Transformation

m Control the “lens” of the camera

m Important camera parameters to specify
= Camera (eye) position (Ex,Ey,Ez) in world coordinate system
= |lookAt point (cx, cy, cz)
= Orientation (which way is up?): Up vector (Up_Xx, Up_y, Up_2)

A’// (eX1 ey1 eZ) N
world ’ view up vector

T T (Up_x, Up_y, Up_2)




Viewing Transformation

m Transformation?

m Form a camera (eye) coordinate frame

m Transform objects from world to eye space
m Eye space?

m Transform to eye space can simplify many downstream
operations (such as projection) in the pipeline

(0,1,0) (1,0,0)

V\“/v - (0,0,1)
y »

COl ( )

world X




Viewing Transformation

m gluLookAt call transforms the object from world to eye
space by:
m Constructing eye coordinate frame (u, v, n)
m Composes matrix to perform coordinate transformation
m Loads this matrix into the V part of modelview matrix
m Allows flexible Camera Control




Eye Coordinate Frame

m Constructing u,v,n?

m Known: eye position, LookAt Point, up vector
m To find out: new origin and three basis vectors

Lookat Point

eye

Assumption: direction of view is
orthogonal to view plane (plane
that objects will be projected onto)




Eye Coordinate Frame

m Origin: eye position (that was easy)

m Three basis vectors:
m one is the normal vector (n) of the viewing plane,
m other two (u and v) span the viewing plane

N is pointing away from the
world because we use left
hand coordinate system

Lookat Point

A

eye N = eye — Lookat Point
n N / | N|

f

world origin | Remember u,v,n should
’ be all unit vectors

(u,v,n should all be orthogonal)




Eye Coordinate Frame

m How about u and v?

\We can get u first -
eU IS a vector that is perp
to the plane spanned by
N and view up vector (V_up)

U = V. _up x n

u ninn




Eye Coordinate

How about v?

Frame

Knowing n and u, getting v
IS easy

vV = n X u

Vv Is already normalized




Eye Coordinate Frame

Eye space origin: (Eye.x , Eye.y,Eye.z)

n = (eye — Lookat) / | eye — Lookat|
u = (VW upx n)/ |V upxn|

Nn X U




World to Eye Transformation

m Next, use u, v, n to compose V part of modelview
m Transformation matrix (Mwze) 2

P’ = Mw2ex P

world

1. Come up with the transformation
sequence to move eye coordinate
frame to the world

2. And then apply this sequence to the
point P In a reverse order




World to Eye Transformation

Rotate the eye frame to “align” it with the world frame

Translate (-ex, -ey, -ez)

Rotation:
4 u
ry \g£1+ N
(ex,ey,ez)
world
> X Translation:

ux uy uz
VX VY VZ
nxX ny nz
O 0O O

©COO0OHr
ool _Ne
Opr OO

0
0]
0]

1

-eX

-ey
-eZ




World to Eye Transformation

= Transformation order: apply the transformation to the
object in a reverse order - translation first, and then

rotate
Mw2e =
vV o u
Yy XZ' N
(ex,ey,ez)
worl|d

X

ux uy ux O 1 0 O -ex
vx vy vz O O 1 0 -ey
nx ny nz O O 0 1 -ez
O 0 O 1 O 0 O 1

Ux uy uz -e.u
VX VY VZ -e .V
— |(nXx ny nz -e.n
O 0 O 1

Note: e.u = ex.ux + ey.uy + ez.uz




Flexible Camera Control

m Sometimes, we want camera to move
m Just like controlling a airplane’s orientation

m Use aviation terms for this: pitch, yaw, roll
m Pitch: nose up-down
m Roll: roll body of plane

m Yaw: move nose side to side

y
y

aw
pitch 1 roll




Flexible Camera Control

m May create a camera class

cl ass Caner a

private:
Poi nt 3 eye;
Vector3 u, Vv, n;.. etc

m Let user specify pitch, roll, yaw to change camera
m Example:

camslide(-1, 0, -2); // slide canera forward and | eft
camrol | (30); [/ roll camera through 30 degrees

cam yaw 40) ; [/ yaw It through 40 degrees
campitch(20); [// pitch it through 20 degrees




Flexible Camera Control

= gluLookAt() does not let you control roll, pitch and yaw
= Main idea behind flexible camera control
= User supplies g, f or roll angle
= Constantly maintain the vector (u, v, n) by yourself
= Calculate new u’, v’, n’ after roll, pitch, slide, or yaw
= Compose new V part of modelview matrix yourself

= Set modelview matrix directly yourself using
glLoadMatrix call




Loading Modelview Matrix directly

voi d Canera: : set Model Vi ewat ri x(voi d)
[/ 1 oad nodelview matrix wth existing canmera val ues

{

Vect or 3 eVec(eye. X,

float nf16];
nf 0] = u.x;
nl] = v.x;
n 2] = n.x;
n3] = 0;

n 4]
n 3]
n 6]
n 7]

eye.y, eye.z);//

u.y; n8] = u.z;
v.y; ni9] = v.z;
n.y, nf10] = n.z;
O30 edlas 1%

gl Mat ri xMode( GL_MODELVI EW ;

gl LoadMatri xf (m;

/]

eye as vector

n 12]
n 13]
n 14]
nl 15]

-eVec. dot (u);
-eVec. dot (Vv);
-eVec. dot (n);
1. 0;

| oad Open@.’ s nodel view matri x

Above setModelViewMatrix acts like gluLookAt

Slide changes eVec, roll, pitch, yaw, change u, v, n




Camera Slide

m User changes eye by delU, delV or delN
m eye = eye + changes
m Note: function below combines all slides into one

void canera::slide(float delU, float delV, float delN)
{

eye. X += del Uru.x + del V*v.x + del N*n. Xx;

eye.y += del Ufu.y + del V*v.y + del N*n.y;

eye.z += del U*u.z + del V*v.z + del N*n. z;

set Model Vi ewVat ri x( );




Camera Roll

Voo A4
K u’ u'=cos@)u+sn@)v
S 4 I
Y ////5/ V'=- sin@)u +cos@)v
‘//,)f// » U
LEy \
\

void Canera::roll (fl oat angl e)

{ /I roll the canera through angl e degrees
float cs = cos(3.142/180 * angl e);
float sn = sin(3.142/180 * angl e);
Vector3 t = u; // renmenber old u
u.set(cs*t.x — sn*v.x, cs*t.y — sn.v.y, cs*t.z — sn.v.z),;
v.set(sn*t.x + cs*v.Xx, sn*t.y + cSs.Vv.y, sn*t.z + CS.V.2Z)
set Model Vi ewMat ri x( );




Flexible Camera Control

= How to compute the viewing vector (X,y,z) from pitch(f)
and yaw(q) ? Read sections 7.2, 7.3 of Hill

z = Rcos(f)cos(90-q)

X = Rcos(f)cos(q)
A Y




References

m Hill, chapter 7




