
CS 4731/543: Computer Graphics
Lecture 4 (Part II): 3D Viewing and Camera Control

Emmanuel Agu

3D Viewing

n Similar to taking a photograph
n Control the “lens” of the camera
n Project the object from 3D world to 2D screen

Viewing Transformation

n Recall, setting up the Camera:
n gluLookAt (Ex, Ey, Ez, cx, cy, cz, Up_x, Up_y, Up_z)
n The view up vector is usually (0,1,0)
n Remember to set the OpenGL matrix mode to

GL_MODELVIEW first

n Modelview matrix:
n combination of modeling matrix M and Camera transforms V

n gluLookAt fills V part of modelview matrix
n What does gluLookAt do with parameters (eye, LookAt, up

vector) you provide?

Viewing Transformation

n OpenGL Code:

void display()
{

glClear(GL_COLOR_BUFFER_BIT);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(0,0,1,0,0,0,0,1,0);
display_all(); // your display routine

}

Viewing Transformation

n Control the “lens” of the camera
n Important camera parameters to specify

n Camera (eye) position (Ex,Ey,Ez) in world coordinate system
n lookAt point (cx, cy, cz)
n Orientation (which way is up?): Up vector (Up_x, Up_y, Up_z)

world
(cx, cy, cz)

(ex, ey, ez)
view up vector
(Up_x, Up_y, Up_z)

Viewing Transformation

n Transformation?
n Form a camera (eye) coordinate frame
n Transform objects from world to eye space

n Eye space?
n Transform to eye space can simplify many downstream

operations (such as projection) in the pipeline

world

uv n

x

y

z

(0,0,0)
coi

(1,0,0)(0,1,0)
(0,0,1)

Viewing Transformation

n gluLookAt call transforms the object from world to eye
space by:
n Constructing eye coordinate frame (u, v, n)
n Composes matrix to perform coordinate transformation
n Loads this matrix into the V part of modelview matrix
n Allows flexible Camera Control

Eye Coordinate Frame

n Constructing u,v,n?
n Known: eye position, LookAt Point, up vector
n To find out: new origin and three basis vectors

eye

Lookat Point

Assumption: direction of view is
orthogonal to view plane (plane
that objects will be projected onto)

90
o

Eye Coordinate Frame

n Origin: eye position (that was easy)
n Three basis vectors:

n one is the normal vector (n) of the viewing plane,
n other two (u and v) span the viewing plane

eye
Lookat Point

n

u
v

world origin Remember u,v,n should
be all unit vectors

n is pointing away from the
world because we use left
hand coordinate system

N = eye – Lookat Point
n = N / | N |

(u,v,n should all be orthogonal)

Eye Coordinate Frame

n How about u and v?

eye
Lookat

n

u
v

V_up •We can get u first -
•u is a vector that is perp
to the plane spanned by
N and view up vector (V_up)

U = V_up x n

u = U / | U |

Eye Coordinate Frame

n How about v?

eye
Lookat

n

u
v

V_up Knowing n and u, getting v
is easy

v = n x u

v is already normalized

Eye Coordinate Frame

n Put it all together

eye
Lookat

n

u
v

V_up

Eye space origin: (Eye.x , Eye.y,Eye.z)

Basis vectors:

n = (eye – Lookat) / | eye – Lookat|
u = (V_up x n) / | V_up x n |
v = n x u

World to Eye Transformation

n Next, use u, v, n to compose V part of modelview
n Transformation matrix (Mw2e) ?

P’ = Mw2e x P

uv

n

world

x

y

z

P

1. Come up with the transformation
sequence to move eye coordinate
frame to the world

2. And then apply this sequence to the
point P in a reverse order

World to Eye Transformation

n Rotate the eye frame to “align” it with the world frame

n Translate (-ex, -ey, -ez)

uv

n

world

x

y

z

(ex,ey,ez)

Rotation: ux uy uz 0
vx vy vz 0
nx ny nz 0
0 0 0 1

Translation: 1 0 0 -ex
0 1 0 -ey
0 0 1 -ez
0 0 0 1

World to Eye Transformation

n Transformation order: apply the transformation to the
object in a reverse order - translation first, and then
rotate

Mw2e =

uv

n

world
x

y

z

(ex,ey,ez)

ux uy ux 0 1 0 0 -ex
vx vy vz 0 0 1 0 -ey
nx ny nz 0 0 0 1 -ez
0 0 0 1 0 0 0 1

ux uy uz -e . u
vx vy vz -e . v
nx ny nz -e . n
0 0 0 1

=

Note: e.u = ex.ux + ey.uy + ez.uz

Flexible Camera Control

n Sometimes, we want camera to move
n Just like controlling a airplane’s orientation
n Use aviation terms for this: pitch, yaw, roll

n Pitch: nose up-down
n Roll: roll body of plane
n Yaw: move nose side to side

pitch

φ
x

y

yaw
θ

y

x

roll

δ

Flexible Camera Control

n May create a camera class

class Camera
private:

Point3 eye;
Vector3 u, v, n;…. etc

n Let user specify pitch, roll, yaw to change camera
n Example:

cam.slide(-1, 0, -2); // slide camera forward and left
cam.roll(30); // roll camera through 30 degrees
cam.yaw(40); // yaw it through 40 degrees
cam.pitch(20); // pitch it through 20 degrees

Flexible Camera Control

n gluLookAt() does not let you control roll, pitch and yaw
n Main idea behind flexible camera control

n User supplies θ, φ or roll angle
n Constantly maintain the vector (u, v, n) by yourself
n Calculate new u’, v’, n’ after roll, pitch, slide, or yaw
n Compose new V part of modelview matrix yourself
n Set modelview matrix directly yourself using

glLoadMatrix call

Loading Modelview Matrix directly

void Camera::setModelViewMatrix(void)
{ // load modelview matrix with existing camera values

float m[16];
Vector3 eVec(eye.x, eye.y, eye.z);// eye as vector
m[0] = u.x; m[4] = u.y; m[8] = u.z; m[12] = -eVec.dot(u);
m[1] = v.x; m[5] = v.y; m[9] = v.z; m[13] = -eVec.dot(v);
m[2] = n.x; m[6] = n.y; m[10] = n.z; m[14] = -eVec.dot(n);
m[3] = 0; m[7] = 0; m[11] = 0; m[15] = 1.0;
glMatrixMode(GL_MODELVIEW);
glLoadMatrixf(m); // load OpenGL’s modelview matrix

}

Above setModelViewMatrix acts like gluLookAt

Slide changes eVec, roll, pitch, yaw, change u, v, n

Camera Slide

n User changes eye by delU, delV or delN
n eye = eye + changes
n Note: function below combines all slides into one

void camera::slide(float delU, float delV, float delN)
{

eye.x += delU*u.x + delV*v.x + delN*n.x;
eye.y += delU*u.y + delV*v.y + delN*n.y;
eye.z += delU*u.z + delV*v.z + delN*n.z;
setModelViewMatrix();

}

Camera Roll

void Camera::roll(float angle)
{ // roll the camera through angle degrees

float cs = cos(3.142/180 * angle);
float sn = sin(3.142/180 * angle);
Vector3 t = u; // remember old u
u.set(cs*t.x – sn*v.x, cs*t.y – sn.v.y, cs*t.z – sn.v.z);
v.set(sn*t.x + cs*v.x, sn*t.y + cs.v.y, sn*t.z + cs.v.z)
setModelViewMatrix();

}

u

v’ v

u’

α
vuv

vuu
)cos()sin('

)sin()cos('
αα

αα
+−=

+=

Flexible Camera Control

n How to compute the viewing vector (x,y,z) from pitch(φ)
and yaw(θ) ? Read sections 7.2, 7.3 of Hill

θ

y

x
φ

Φ = 0
θ = 0

R

R cos(φ)

y = Rsin(φ)

x

y

z

x = Rcos(φ)cos(θ)
z = Rcos(φ)cos(90-θ)

z

References

n Hill, chapter 7

