
CS 543: Computer Graphics
Lecture 7 (Part II): Projection

Emmanuel Agu

3D Viewing and View Volume

n Recall: 3D viewing set up

Projection Transformation

n View volume can have different shapes (different looks)
n Different types of projection: parallel, perspective,

orthographic, etc
n Important to control

n Projection type: perspective or orthographic, etc.
n Field of view and image aspect ratio
n Near and far clipping planes

Perspective Projection

n Similar to real world
n Characterized by object foreshortening
n Objects appear larger if they are closer to camera
n Need:

n Projection center
n Projection plane

n Projection: Connecting the object
to the projection center

projection plane

camera

Projection?

VRP

COP

Object in 3 space

Projectors

Projected image

Orthographic Projection

n No foreshortening effect – distance from camera does not
matter

n The projection center is at infinite
n Projection calculation – just drop z coordinates

Field of View

n Determine how much of the world is taken into the picture
n Larger field of view = smaller object projection size

x

y

z

y

z θ

field of view
(view angle)

center of projection

Near and Far Clipping Planes

n Only objects between near and far planes are drawn
n Near plane + far plane + field of view = Viewing Frustum

x

y

z

Near plane Far plane

Viewing Frustrum

n 3D counterpart of 2D world clip window
n Objects outside the frustum are clipped

x

y

z

Near plane Far plane

Viewing Frustum

Projection Transformation

n In OpenGL:
n Set the matrix mode to GL_PROJECTION
n Perspective projection: use

• gluPerspective(fovy, aspect, near, far) or
• glFrustum(left, right, bottom, top, near, far)

n Orthographic:
• glOrtho(left, right, bottom, top, near, far)

gluPerspective(fovy, aspect, near, far)

n Aspect ratio is used to calculate the window width

x

y

z

y

z fovy

eye

near farAspect = w / h

w

h

glFrustum(left, right, bottom, top, near, far)

n Can use this function in place of gluPerspective()

x

y

z

left

right
bottom

top

near far

glOrtho(left, right, bottom, top, near, far)

n For orthographic projection

x

y

z

left

rightbottom

top

near
far

Example: Projection Transformation

void display()
{

glClear(GL_COLOR_BUFFER_BIT);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(fovy, aspect, near, far);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(0,0,1,0,0,0,0,1,0);
display_all(); // your display routine

}

Demo

n Nate Robbins demo on projection

Projection Transformation

n Projection – map the object from 3D space to 2D
screen

x

y

z

x

y

z

Perspective: gluPerspective() Parallel: glOrtho()

Parallel Projection

nn After transforming the object to the eye space, parallel After transforming the object to the eye space, parallel
projection is relatively easy projection is relatively easy –– we could just drop the Zwe could just drop the Z
n Xp = x
n Yp = y
n Zp = -d

n We actually want to keep Z
– why?

x

y

z
(x,y,z)

(Xp, Yp)

Parallel Projection

n OpenGL maps (projects) everything in the visible
volume into a canonical view volume

(-1, -1, 1)

(1, 1, -1)

Canonical View VolumeglOrtho(xmin, xmax, ymin,
ymax,near, far)

(xmin, ymin, near)

(xmax, ymax, far)

Projection: Need to build 4x4 matrix to do
mapping from actual view volume to CVV

Parallel Projection: glOrtho

n Parallel projection can be broken down into two parts
n Translation which centers view volume at origin
n Scaling which reduces cuboid of arbitrary dimensions to

canonical cube (dimension 2, centered at origin)

Parallel Projection: glOrtho

n Translation sequence moves midpoint of view volume to
coincide with origin:

n E.g. midpoint of x = (xmax + xmin)/2
n Thus translation factors:

-(xmax+xmin)/2, -(ymax+ymin)/2, -(far+near)/2
n And translation matrix M1:

+−
+−
+−

1000
2/min)max(100
2/min)max(010
2/min)max(001

zz
yy
xx

Parallel Projection: glOrtho

n Scaling factor is ratio of cube dimension to Ortho view
volume dimension

n Scaling factors:
2/(xmax-xmin), 2/(ymax-ymin), 2/(zmax-zmin)

n Scaling Matrix M2:

−

−

−

1000

0
minmax

2
00

00
minmax

2
0

000
minmax

2

zz

yy

xx

Parallel Projection: glOrtho

−+−−
−+−−
−+−−

=×

1000
min)max/(min)max(min)max/(200

min)max/(min)max(0min)max/(20
min)max/(min)max(00min)max/(2

12
zzzzzz

yyyy
xxxxxx

MM

Refer: Hill, 7.6.2

Concatenating M1xM2, we get transform matrix used by glOrtho

−

−

−

1000

0
minmax

200

00
minmax

2
0

000
minmax

2

zz

yy

xx

X

+−
+−
+−

1000
2/min)max(100
2/min)max(010
2/min)max(001

zz
yy
xx

Perspective Projection: Classical

n Side view:

x

y

z

(0,0,0)

d

Projection plane

Eye (projection center)

(x,y,z)

(x’,y’,z’)

-z

z

y
Based on similar triangle:

y -z
y’ d

d
y’ = y x

-z

=

Perspective Projection: Classical

n So (x*,y*) the projection of point, (x,y,z) unto the near
plane N is given as:

n Numerical example:
Q. Where on the viewplane does P = (1, 0.5, -1.5) lie for a

near plane at N = 1?

n (x*, y*) = (1 x 1/1.5, 1 x 0.5/1.5) = (0.666, 0.333)

()

−−

=
z

y

z

x

P

P
N

P
P

Nyx ,**,

Pseudodepth

n Classical perspective projection projects (x,y) coordinates,
drops z coordinates

n But we need z to find closest object (depth testing)
n Keeping actual distance of P from eye is cumbersome and

slow

n Introduce pseudodepth: all we need is measure of which
objects are further if two points project to same (x,y)

n Choose a, b so that pseudodepth varies from –1 to 1
(canonical cube)

()222tan zyx PPPcedis ++=

()

−

+
−−

=
z

z

z

y

z

x

P
baP

P

P
N

P
P

Nzyx ,,**,*,

Pseudodepth

n Solving:

n For two conditions, z* = -1 when Pz = -N and z* = 1 when
Pz = -F, we can set up two simultaneuous equations

n Solving:

z

z

P
baP

z
−

+
=*

NF
NF

a
−
+−

=
)(

NF
FN

b
−

−
=

2

Homogenous Coordinates

n Would like to express projection as 4x4 transform matrix
n Previously, homogeneous coordinates of the point P =

(Px,Py,Pz) was (Px,Py,Pz,1)
n Introduce arbitrary scaling factor, w, so that P = (wPx,

wPy, wPz, w) (Note: w is non-zero)
n For example, the point P = (2,4,6) can be expressed as

n (2,4,6,1)
n or (4,8,12,2) where w=2
n or (6,12,18,3) where w = 3

n So, to convert from homogeneous back to ordinary
coordinates, divide all four terms by last component and
discard 4th term

Perspective Projection

n Same for x. So we have:
x’ = x x d / -z
y’ = y x d / - z
z’ = -d

n Put in a matrix form:

OpenGL assumes d = 1, i.e. the image plane is at z = -1

()

()

−

−

−

⇒

−

=

− 1/

'
'
'

11100
0100

0010
0001

d
z

yd
z

xd

dz

z
y
x

z
y
x

d

Perspective Projection

n We are not done yet.

n Need to modify the projection matrix to include a and b

x’ 1 0 0 0 x
y’ = 0 1 0 0 y
z’ 0 0 a b z
w 0 0 (1/-d) 0 1

x

y

z

Z = 1 z = -1 We have already solved a and b

Perspective Projection

n Not done yet. OpenGL also normalizes the x and y
ranges of the viewing frustum to [-1, 1] (translate and
scale)

n So, as in ortho to arrive at final projection matrix
n we translate by

n –(xmax + xmin)/2 in x
n -(ymax + ymin)/2 in y

n Scale by:
n 2/(xmax – xmin) in x
n 2/(ymax – ymin) in y

Perspective Projection

n Final Projection Matrix:

glFrustum(xmin, xmax, ymin, ymax, N, F) N = near plane, F = far plane

−
−

−
−
+−

−
+

−

−
+

−

0100

2)(00

0
minmax
minmax

minmax
2

0

0
minmax
minmax0

minmax
2

NF
FN

NF
NF

yy
yy

yy
N

xx
xx

xx
N

Perspective Projection

n After perspective projection, viewing frustum is also
projected into a canonical view volume (like in parallel
projection)

(-1, -1, 1)

(1, 1, -1)

Canonical View Volume

x

y

z

References

n Hill, chapter 7

