
CS 4731/543: Computer Graphics
Lecture 8 (Part II): Raytracing (Part 4)

Emmanuel Agu

Reflection and Transparency

n Ray tracing also handles reflections and refraction of light
well

n We can easily render realistic scenes with
n mirrors,
n martini glasses

n So, far, we have considered Local components (ambient,
diffuse, specular)

n Local components are contributions from light sources
which are visible from hit point

n To render reflection, and refraction we need to add
reflection and refraction components of light

tranreflspecdiffamb IIIIII ++++=

Reflection and Transparency

n First three components are local

n Reflected component, IR is along mirror direction from eye
–r

tranreflspecdiffamb IIIIII ++++=

Ph

v

r m

s

dir

t

IR

IT

I

Reflection and Transparency

n r is given as (see eqn 4.22) as

n Transmitted component IT

is along transmitted direction t
n Portion of light coming in from

direction t is bent along dir
n IR and IT each have their own

five components (ambient, diffuse, etc)
n In some sense, point P’ along reflected

direction r serves as a light source to point Ph

mmdirdirr)(2 •−=

Ph

v

r
m

s

dir

t

IR

IT

I

P’

Reflection and Transparency

n To determine reflected component
n Spawn reflected ray along direction r
n Determine closest object hit

n To determine transmitted component
n Cast transmitted ray along

direction t
n Determine closest object hit

n So, at each hit point, local, reflected
and refracted components merge to
form total contributions

Ph

v

r
m

s

dir

t

IR

IT

I

P’

Reflection and Transparency: Ray Tree

n Local, reflected, transmitted and shadow rays form a tree

Reflection and Transparency

n Tree structure suggest recursion at successive hit points
n Recurse forever? No!!
n At each point, only fraction of impinging reflected or

refracted ray is lost
n Who determines fraction? Designer… sets transparency or

reflectivity in SDL file.
n E.g reflectivity 0.8 means only 80% of impinging ray is

reflected
n Thus, need to check reflected contribution by saying

if (reflectivity > 0.6)…
n Also check if(transparency > threshold)
n Basically, do not want to work hard for tiny contributions.

Drop (terminate shade) if contribution is too small

Refraction and Transparency

n May also need to determine how many times you want to
bounce (even if threshold is still high)

n For example, in room with many mirrors, do you want to
bounce forever (your system may cry!!)

n Set recurseLevel (yup!! same as in shadows) to say how
many bounces using (variable maxRecursionLevel)

n recurseLevel of 4 or 5 is usually enough to create realistic
pictures

n Ray from eye to first hit point has recurseLevel of 0
n All rays from first hit point have recurseLevel = 1
n Need to modify shade function to handle recursion

Recursive shade() skeleton

Color3 Scene::shade(Ray&)
{

Get the first hit, and build hitInfo h
Shape* myObj = (Shape*)h.hitObject; // ptr to hit obj
Color3 color.set(the emissive component);
color.add(ambient contribution);
get normalized normal vector m at hit point
for(each light source)

add the diffuse and specular components
// now add the reflected and transmitted components

if(r.recurseLevel == maxRecursionLevel)
return color; // don’t recurse further

Recursive shade() skeleton

if(hit object is shiny enough) // add reflected light
{

get reflection direction
build reflected ray, refl
refl.recurseLevel = r.recurseLevel + 1;
color.add(shininess * shade(refl));

}
if(hit object is transparent enough)
{

get transmitted direction
build transmitted ray, trans
trans.recurseLevel = r.recurseLevel + 1;
color.add(transparency * shade(trans));

}
return color;

}

Finding Transmitted Direction

n So far, found reflected direction ray direction as mirror
direction from eye

n Transmitted direction obeys Snell’s law
n Snell’s law: relationship holds in the following diagram

Ph

m

t

1

1

2

2)sin()sin(
cc
θθ

=

faster

slower
θ2

θ1

c1, c2 are speeds of light in
medium 1 and 2

Finding Transmitted Direction

n If ray goes from faster to slower medium, ray is bent
towards normal

n If ray goes from slower to faster medium, ray is bent
away from normal

n c1/c2 is important. Usually measured for medium-to-
vacuum. E.g water to vacuum

n Some measured relative c1/c2 are:
n Air: 99.97%
n Glass: 52.2% to 59%
n Water: 75.19%
n Sapphire: 56.50%
n Diamond: 41.33%

Critical Angle

n There exists transmitted angle at which ray in faster
medium (e.g. air) is bent along object surface

n That angle (θ2 in figure below) is known as the critical
angle

n Increasing transmission angle beyond critical angle has
“no effect”… transmitted ray still below object surface

n Physical significance:
n Underwater in pond, can see

enter world through small
cone of angles

Ph

m

t

faster

slower
θ2

θ1

Transmission Angle

n Vector for transmission angle can be found as

Ph

m

t

mdirmdirt

−•+=)cos()(2

1

2

1

2 θ
c
c

c
c

Medium #1

Medium #2
θ2

θ1

where
dir

c2

c1
()2

1

2
2)(11)cos(dirm •−

−=

c
c

θ

For Project 5

n May read up hit (intersection) functions for shapes, add to
your ray tracer
n Cube
n Cylinder
n Mesh, … etc

References

n Hill, chapter 12

